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Abstract

In this thesis we explore new features of various collective dipole modes in exotic
nuclear systems. Our main interest will be concerned with the pygmy dipole resonance
(PDR), a collective mode intensively studied experimentally, and theoretically, in the
last decade. We shall propose two different approaches for the study of the PDR, and
a presentation of the main ingredients of our methods of investigation will be provided.
Firstly, we generalize to neutron-rich nuclei a model first introduced by Brink to study
microscopically the giant dipole resonance (GDR). Thus, within the harmonic oscillator
shell model we identify the dipole normal modes in neutron rich nuclei. One of these
modes corresponds to the motion of the neutron skin against the core. The model allows to
calculate the energy-weighted sum rule exhausted by each normal dipole mode. An upper
limit for the energy-weighted sum rule exhausted by PDR is obtained. A comparison
with the experimental data allows us to evaluate the neutron skin contribution to the
collective dynamics of the pygmy motion. Motivated by the main conclusions arising from
this schematic model, we extend our investigation of the PDR within a self-consistent
microscopic transport model. Within the framework of Fermi liquid theory, by solving
the self-consistent coupled Landau-Vlasov kinetic equations for neutrons and protons, we
explore the structure of different dipole vibrations in neutron rich nuclei. Using different
parametrizations of the symmetry energy with the density, we inquire on the role of the
symmetry energy upon the various dipole motions. An isoscalar-like collective mode with
an energy well bellow the giant dipole resonance is identified, with features expected for
the PDR. The energy centroid of this so called pygmy mode is rather independent to
the symmetry energy parametrization employed. However, its strength is sensitive to the
behaviour of the symmetry energy below saturation, which affects the number of neutrons
belonging to the skin. The systematic investigation of the mass dependence of the PDR
is also performed. We obtain that the parametrization 42 · A−1/3 closely reproduces the
position of the energy centroid of this elusive collective mode.
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Rezumat

În această teză sînt explorate noi aspecte ale diferitelor moduri dipolare în sistemele
nucleare exotice. În principal, vom viza rezonant,a dipolară de tip pygmy (PDR), un
mod colectiv intens studiat în ultima decadă, atît experimental cît s, i teoretic. Pentru
studiul PDR, vom propune două abordări diferite s, i ingredientele principale ale metodelor
folosite vor fi prezentate. În primul rînd, vom generaliza pentru sistemele nucleare bogate
în neutroni, un model introdus init, ial de Brink pentru studiul microscopic al rezonant,ei
gigant dipolare (GDR). Astfel, în cadrul acestui model, vom identifica modurile dipolare
normale în nucleele bogate în neutroni. Unul dintre aceste moduri corespunde mis,cării
skin-ului neutronic în opozit, ie de fază cu core-ul nucleului. De asemenea, modelul permite
calcularea regulii de sumă epuizate de către fiecare mod dipolar. O limită superioară este
obt, inută pentru regula de sumă epuizată de către PDR. Comparat, ia cu datele experimen-
tale ne permite să evaluăm contribut, ia skin-ului neutronic la dinamica colectivă a mis,cării
de tip pygmy. Motivat, i de principalele concluzii emergente acestui model schematic, vom
extinde studiul PDR în cadrul unui model de transport microscopic self-consistent. În
cadrul teoriei lichidelor Fermi, prin rezolvarea ecuat, iilor cinetice cuplate de tip Landau-
Vlasov pentru neutroni s, i protoni, vom explora structura diferitelor moduri dipolare de
vibrat, ie în nucleele bogate în neutroni. Utilizînd diferite parametrizări ale energiei de
simetrie în raport cu densitatea, vom studia dependent,a oscilat, iilor dipolare de energia
de simetrie. Este obt, inut un mod colectiv pygmy de tip isoscalar, cu o energie mult
sub cea a rezonant,ei dipolare gigant. Centroidul energiei corespunzător modului pygmy
este mai degrabă independent de parametrizarea energiei de simetrie utilizată. Cu toate
acestea, tăria modului e sensibilă la comportamentul energiei de simetrie sub densitatea
de saturat, ie, care afectează numărului de neutroni apart, inînd skin-ului. De asemenea,
este studiată dependent,a de masă a centroizilor rezonant,ei dipolare pygmy, fiind obt, inută
parametrizarea 42 · A−1/3.
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Chapter 1

Introduction

1.1 Collective motions in nuclear systems
The emergence of collective features and their structure in terms of the individual mo-
tions of the constituents, is one of the important challenges in many-body physics. Atomic
nuclei are finite fermionic systems for which several collective motions were discovered ex-
perimentally and described in the framework of various theoretical models. This includes
the monopole, quadrupole, and octupole motions, both isoscalar (when protons and neu-
trons are oscillating in phase), and isovector (when protons and neutrons are oscillating
out of phase). One of the most robust collective motions is the giant dipole resonance
(GDR), which, at the macroscopic level can be viewed as an oscillation of the neutrons
against the protons. This collective motion which is present in all nuclei, has an energy
centroid position that varies as 80 · A−1/3 MeV for medium-heavy nuclei. Moreover, the
GDR can be used as a probe to explore the properties of nuclei in extreme conditions
of deformation and temperature [1]. With the advent of modern experimental methods,
atomic nuclei which are far from the valley of stability have been studied. Apart from
the intrinsic interest related to the evolution of the collective dynamics far from stability,
such investigations were also motivated by astrophysical reasons. Indeed, one way to ex-
tract information about neutron stars is to investigate the nuclear skin properties [2, 3].
A neutron-rich skin located on the nuclear surface is a hallmark of exotic heavy nuclei.
These nuclei are characterized by specific structural properties, including the weak bond-
ing between the peripheral and core nucleons, inducing diffuse distributions of neutron
densities towards surface, and the formation of neutronic skin or nuclear halo [4, 5, 6, 7].
Due to these properties, the structure of collective multipolar response in nuclei with
high N/Z ratio, (with N , Z being the number of neutrons and protons respectively), is
modified, and new specific excitation modes arise. In light nuclei, the dipole strength in
the low lying region is caused by the non-resonant single particle excitations of weakly
bound neutrons, whereas in medium or heavy nuclei a concentration of dipolar response
below the GDR centroid was identified experimentally in several cases. Such a resonance
was named pygmy dipole resonance (PDR) and was interpreted as resulting from the out
of phase oscillation of neutron skin against the isospin-saturated core.

In the case of neutron rich tin isotopes (130Sn and 132Sn), Adrich et al. [8] have ob-
served a pronounced energy centroid at around 10 MeV corresponding to a resonant-like
shape distribution. In the case of stable tin nuclei, Özel et al. [9] reported a concentration
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of dipole excitations near and below the particle emission threshold, providing a bench-
mark test for microscopic calculations whose scope is the PDR description in neutron
rich tin isotopes. The strongest dipole transitions for 112Sn were located between 5 and
8 MeV, and a sizeable fraction of the energy-weighted sum rule (EWSR) exhausted by
these modes has been reported [9]. Klimkiewicz et al. [10] observed a correlation between
the pygmy dipole strength and the isospin neutron-proton asymmetry in exotic nuclei.
Moreover, the size of the neutron skin is influenced by the properties of the symmetry
energy below saturation density (i.e. ρ0 = 0.16 fm−3) [11, 12, 13, 2]. Consequently, a
connection between the size of the neutron skin and the exhausted EWSR of the pygmy
mode can be expected. From a comparison of the available data from stable and unstable
isotopes, a correlation between the pygmy dipole strength and neutron to proton asym-
metry was also reported [10]. This behaviour was connected to the symmetry energy
properties below saturation. Since the size of the neutron skin is influenced by the sym-
metry energy, a correlation between the PDR and the skin thickness can also be expected
[13, 2, 11]. Nevertheless, we also remark that other theoretical investigations suggest a
weak connection between the PDR and the skin thickness [14].

In spite of the fact that the properties of the PDR have been extensively studied, the
available information is still incomplete, and several questions regarding its nature still
remain unanswered. In a recent study, Paar [15] has advanced a series of open questions,
regarding the nature of the pygmy dipole resonance. The first question is related to the
collective nature of the pygmy mode. While the collective features of the GDR are well
established, there are contradictory results regarding the collective nature of the low-
lying dipole states which correspond to the PDR [16]. Indeed, some microscopic studies
predict a large fragmentation of dipole strength and the absence of the collective states
in the low lying region of 132Sn [17]. The second is related to the exact location of the
energy centroid corresponding to the PDR, which for light nuclei is located below the
neutron threshold, while for heavier, more neutron-rich nuclei, the peak is higher than
the neutron separation energy. The third question deals with the possible connections
that can be made between the nature of the PDR in stable nuclei and those away from
the valley of stability. Lastly, the macroscopic picture of neutron and proton vibrations
for this resonance, as well as the role of the symmetry energy in the PDR are questioned.
Along the next two subsections we shall briefly review the main experimental results as
well as the most important theoretical approaches to the pygmy response existing in the
literature.

1.2 Experimental evidences for the pygmy dipole res-
onance

Attempts to evidence the possible presence of a low lying dipole strength in various nuclei
have been performed by various experimental groups, using different techniques. Ottini-
Hustache et al. [18], using a 86Kr beam at 60 MeV/nucleon on 40Ca and 48Ca target
isotopes, in scattering processes, observed a non-negligible electric dipole (E1) strength
in the low excitation energy region between 6 and 12 MeV. They do not observed any E1
strength difference between the two systems. Another experimental group [19, 20, 21],
within a (γ, γ′) high resolution photon scattering experiment, investigated the dipole and
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quadrupole responses of the same calcium isotopes up to 10 MeV energies. At energies
between 6 and 10 MeV, a possible evidence for a bound E1 response, caused by the
neutron excess has been signaled, from the comparison of the two isotopes. However,
for the calcium isotope, 48Ca, a concentration of low lying dipole strength which exhaust
0.3% (about 20 times smaller than in the previous findings [18]) of the E1 EWSR has
been observed. The difference in the EWSR exhausted by the pygmy mode between the
reported values of the previous studies, calls for a more detailed picture which can be
achieved throughout both experimental as well as theoretical investigations. We remark
that these studies are the first focusing on the isotopic chain under the same experimental
conditions, allowing for a systematic study about the effects of the N/Z ratio on the PDR.

Regarding the search for the pygmy resonance in medium-nuclei, Wieland et al.
[22, 23] reported for the first time the evidence for PDR in the neutron-rich nickel iso-
tope, 68Ni, within the virtual photon scattering technique. A low lying dipole strength,
with the energy centroid at around 11 MeV, located well below the GDR region has been
reported. The EWSR acquired by the pygmy mode is reported to range between 5% and
9%, implying the need for more accurate experiments, as well as theoretical studies, to
establish the E1 strength with smaller uncertainty. Based on these results, the correla-
tions between the neutron skin size, the percentage of the EWSR exhausted by the PDR,
and the properties of the symmetry energy below saturation were also investigated in the
framework of various theoretical models.

Within a Coulomb dissociation technique following an in-flight fission of a 238U beam,
at energies around 500 MeV/nucleon for the secondary Sn beams, Adrich et al. [8] inves-
tigated the pygmy and giant resonances for the unstable, 130Sn and for the double magic
132Sn tin isotopes. A value of ∼ 10 MeV is reported for the PDR energy centroid, while a
value of ∼ 16 MeV is reported for the GDR one, with little differences in the two isotopes
studied. Moreover, Adrich et al. [8] stress that although a sizeable response concentrated
well below the GDR region is observed, the extent to which a collective motion is formed
for those oscillations is yet under debate. Furthermore, within a (γ, γ′) photon scatter-
ing experiment conducted by Savran et al. [24], a resonance-like concentration for the
semi-magic xenon isotope, 136Xe is observed, well below neutron separation energy, while,
within a polarized proton inelastic scattering at very forward angles approach, Tamii et
al. [25] recently investigated the complete electric dipole response in 208Pb.

1.3 Theoretical approaches to the pygmy dipole reso-
nance

In addition to the experimental information regarding the PDR, several theoretical ap-
proaches have been employed over the years. These approaches can be classified mainly
into four distinct categories: (i) phenomenological approaches based on hydrodynamics
or fluid dynamics equations, (ii) non-relativistic microscopic approaches using random
phase approximation (RPA) with various effective interactions, (iii) relativistic quasi-
particle RPA, and (iv) transport approaches based on Landau-Vlasov equation.

Within a hydrodynamical model, employing three component fluids, Mohan et al.
[26], predicted the existence of two independent modes of giant dipole type, instead of
a single mode, as in the two-fluid model of Steinwedel and Jensen [27]. For 208Pb these
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modes are situated at 13 MeV and at 4.4 MeV respectively. It is observed that the
higher energy mode is quite close to the GDR centroid observed experimentally and it
was identified with the GDR state. The lower energy mode corresponds to a motion in
which the protons and blocked neutrons move together, while the excess neutrons move
in the opposite direction. This picture corresponds to the PDR mode. For the GDR,
a mass dependence proportional to A−1/3 is predicted. It is concluded that most of the
strength remains in the high energy mode.

More recently, within a S-J hydrodynamical model, Suzuki et al. [28], concluded that
the excess nucleons in neutron rich nuclei or proton rich nuclei, will play a distinctive role
due to the loose coupling to the core. They considered a two-fluid system formed by the
core and excess fluids. Again, a PDR mode is predicted. The resonance energy and the
dipole strength for the PDR increase with the increasing number of excess neutrons. For
the extremely rich neutron-rich nucleus 61Ca it is found that the PDR excitation energy
attains ∼ 8 MeV and the EWSR fraction is around ∼ 16%. In this case, the nucleus
46Ca was chosen as the core, since the binding energy per particle is the biggest among
the calcium isotopes. It is worth mentioning also the quantum fluid approaches within a
hydrodynamical formulation reported by Bastrukov et al. [29], where, it is argued that
the PDR emerges as a soft dipole motion of elastic shell oscillations of irrotational flow,
confined in the finite depth surface layer. The analytical equation for the frequency of this
dipole vibration leads to an estimate of the PDR energy centroid 31·A−1/3 on the mass. In
this model, a decomposition into two spherical domains appears: the undisturbed inner
region corresponds to the static core, while the external layer undergoes elastic shear
vibrations. Moreover, it is mentioned that the emergence of the elastic force responsible
for the PDR, is related to the resistivity to disruption of peripheral circular periodic
orbits of uninterrupted Fermi-motion of independent particles in the nuclear mean-field.

Microscopic approaches within the random phase approximation (RPA) formalism,
have been employed using various effective interactions [30, 31, 32]. Within such an ap-
proach, Tsoneva and Lenske [30] investigated the dipole excitation in various tin isotopes
in the low lying region. A sizeable dipole strength below the neutron emission threshold
was obtained for the neutron rich isotopes from 112Sn to 132Sn, while, for the proton
rich isotopes, 100Sn → 104Sn, a proton PDR has been obtained. Co’ et al. [31], inves-
tigated several neutron-rich isotopes, within a phenomenological RPA approach without
pairing effects. In the oxygen isotopes cases, instead of the emergence of a new excita-
tion pygmy-like mode, a fragmentation of the giant mode has been observed. For the
neutron-rich 48Ca isotope, an energy centroid located in the low lying region, at around
8.5 MeV, has been attributed to a PDR. Moreover, from the zirconium and tin isotopes
studied, the calculations clearly predicted that the emergence of the distinct pygmy-like
collective motion is a common feature of medium and heavy nuclei. In another study per-
formed by Yoshida [32], the deformed even-even neutron-rich magnesium isotopes (36Mg
→ 40Mg) have been investigated within a quasi-particle RPA approach, using a Skyrme
SkM* energy density functional (EDF), as well as the local mixed-type pairing EDF.
It has been found that the PDR has both an isoscalar as well as an isovector charac-
ter, while a considerable coupling between the isovector dipole, isoscalar octupole and
compressional dipole modes occurs in the low lying region, due to the mixing of different
angular momenta in deformed systems. Quite recently, Roca-Maza et al. [33] investigated
the even-even neutron rich nuclei 68Ni, 132Sn and 208Pb, within the fully self-consistent
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mean-field Skyrme-Hartree-Fock plus RPA approach. Three different Skyrme interactions
(namely, SGII, SLy5 and SKI3) were employed, to investigate the correlations between
the isoscalar and isovector responses in the low-lying region on the slope parameter of
the symmetry energy, L. Consequently, increasing the values of the slope parameter, the
centroid of the strength function in the low-lying region, for both isoscalar and isovector
dipole responses, are shifted towards larger energies for all the nuclei previously men-
tioned. Moreover, the PDR for these nuclei manifest a mixed character, with a strong
isoscalar and also a non-negligible isovector components. While a clear collective nature
of the isoscalar component is found, there are no evidences to support the same collective
nature of the isovector response.

Using the density functional theory (DFT) formalism, Chambers et al. [34] performed
calculations for even-even calcium isotopes between 40Ca and 48Ca. An additional res-
onance below 10 MeV in neutron rich isotopes, corresponding to an oscillation of the
surface neutrons against the inert core was obtained. The energy centroid corresponding
to the PDR, is reported as 9.1 MeV for 42Ca, while for 48Ca it decreases to 7.6 MeV. The
exhausted EWSR is reported to be around ∼ 2% for 48Ca isotope.

Besides the non-relativistic methods previously presented, the low-lying dipole states
in neutron rich isotopes have been investigated using relativistic quasi-particle RPA ap-
proaches [35, 36, 37, 38, 39, 40]. The collectivity of the low-lying dipole strength was
investigated in the relativistic RPA by Vretenar et al. [35]. The development of the
isovector collective response was investigated in the chain of oxygen, calcium, nickel and
tin isotopes. A clear splitting between the GDR and PDR modes was evidenced with the
increase of the excess number of neutrons. In the same time, the strength distribution
becomes more fragmented and spreads to low energy regions. In light nuclei, the low-
energy response is the result of single particle excitations of loosely bound neutrons, while
for medium-heavy nuclei a coherent superposition of many neutron particle-hole config-
urations was interpreted as a collective PDR corresponding to a vibration of the excess
neutrons against the symmetric inner core, exhausting few percents of the EWSR. A de-
tailed analysis of the corresponding transition densities and velocity distributions reveals
the detailed dynamics of this mode, including the competition between the isoscalar and
isovector components [36]. Very recently, in 2012, in the framework of relativistic energy
density functional, employing a fully self-consistent RPA, Vretenar et al. [40] investigated
the evolution of pygmy dipole states for 68Ni, 132Sn, and 208Pb, as a function of the value
of symmetry energy at saturation as well as a function of the symmetry energy slope.
Several conclusions from this exhaustive study emerge: (i) the occurrence of the PDR as
a collective state is enhanced with the increase of the symmetry energy and slope values,
(ii) in all cases, few percentages of the isovector EWSR are exhausted by the PDR, and,
in general, the fraction exhausted by the PDR increases with the slope parameter. Con-
trary to the results reported by Roca-Maza [33], for the isovector response, the centroid
for the low-lying strength shifts towards lower values, with the increase of a4 (the value
of symmetry energy at saturation) and L (the slope parameter of the symmetry energy
- see also Chapter 3). Moreover, for a given interaction, the centroid of the low-lying
strength shifts towards lower values when one moves from lighter (e.g. nickel) towards
heavier nuclei (e.g. lead) (see also Fig. 1 from Ref. [40]).

After 2009, the problem of the collective nature of the low-lying isovector excita-
tions was tackled also from a transport approach perspective [41, 42, 43]. In a semi-
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phenomenological approach, Abrosimov and Davydovs’ka [41], studied the linearized ki-
netic Vlasov equation for a nucleus assumed to be composed from a core and a low density
spherical external layer. They applied this formalism to calculate the strength function
for 208Pb and obtained that the maximum response lies at an energy of 7.8 MeV and
exhausted 7.5% of the dipole EWSR, assuming that all the excess neutrons are located in
the external layer. Assuming less neutrons belong to the external layer, the energy cen-
troid shifts to 8.6 nMeV, while the exhausted EWSR is reduced with 1%. Using the bulk
part of the Barcelona-Catania-Paris functional [44], and in the absence of Coulomb inter-
actions among protons, within a semi-classical Thomas-Fermi-Vlasov approach, Urban
[43] investigated the electric dipole and isoscalar torus response in neutron rich isotopes.
It was concluded, from the peak positions, velocity fields, and transition densities that the
PDR has an important isoscalar torus component. However, his conclusion contradicts
the results of Bastrukov et al. [29] obtained within a hydrodynamical approach, relying
on the elasticity of the nuclear medium due to quantum effects.

Based on the experimental observations and the different, and sometimes contradic-
tory conclusions regarding the theoretical investigations of the PDR, we also investigated
the PDR both within a microscopic schematic model and within a transport model based
on the Vlasov equation, in connection with the properties of the symmetry energy below
saturation density.

Following the introduction from the first Chapter, in Chapters 2 and 4, we develop
the original subject matter of the thesis. In the second Chapter, within a harmonic
oscillator shell model (HOSM) extended to neutron-rich nuclei, we show that the collective
coordinates associated to protons, core and excess neutrons are separable, and, upon a
dipolar excitation, the vibration of the excess neutrons against the isospin saturated core
emerges, which can be ascribed to the PDR. Consequently, we obtain an upper limit for
the EWSR exhausted by this pygmy mode. We discuss the predictions of the model for
different systems from the nuclear chart.

In Chapter 4, based on the understanding of the structure of the dipole normal modes
in exotic nuclei, provided by the schematic model, we explore, in a description based on
Landau Fermi liquid theory, the structure of the dipole vibrations, by solving the two
coupled Landau-Vlasov kinetic equations describing the neutrons and protons dynamics.
Our self-consistent treatment, including the Coulomb interaction, and employing three
different parametrizations with the density of the isovector mean field, allows the disen-
tangling of the symmetry energy role on the dipolar response of neutron-rich nuclei. We
shall focus on two important observables concerning the collective response, namely the
energy centroid and the corresponding EWSR exhausted by the pygmy mode. Moreover,
the dependence on the mass number, A, of the low-lying dipole response is also addressed.
Taking into account that the main ingredients in our approach are the transport equa-
tions and the symmetry energy, in Chapter 3, we expose the main concepts related to
the nuclear equation of state and the properties of the symmetry energy as well as the
position of the kinetic equations of Vlasov-type in the context of time-dependent studies
of nuclear systems.
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Chapter 2

Pygmy dipole resonance in a schematic
model

In this Chapter we explore some features of the dipole dynamics in nuclear systems
within a harmonic oscillator shell model. We firstly present the work of Brink [45], who
has shown that within this model, the coordinate corresponding to the dipole photon
absorption operator is entirely separable. We then generalize this approach for neutron
rich nuclei, and identify the dipole normal modes defined by this Hamiltonian.

With the help of the Thomas-Reiche-Kuhn (TRK) sum rule, which for the sake of
completeness will also be discussed, an upper limit for the energy weighted sum rule
(EWSR) exhausted by the pygmy mode will be obtained. The dependence of the fraction
of the EWSR associated by this mode will be analyzed for various calcium, nickel, tin
and lead isotopes.

2.1 Giant dipole resonance in a Harmonic Oscillator
Shell Model

The giant dipole resonance can be phenomenologically represented as a collective mode
within two different models, the first being proposed by Goldhaber and Teller [46] in 1948
and the second by Steinwedel and Jensen [27] in 1950. Within the first model the whole
protons and neutrons spheres vibrate one against the other without distortion. In the
second model, the collective mode manifests as an out of phase change of local relative
densities of protons and neutrons wile the total nuclear density remains unchanged. While
in the first model the surface of the nuclear system changes, in the second model it remains
fixed (see also Fig. 2.1). In 1957 Brink [45] provided the first microscopic justification
of the G-T dynamics, within a shell model description. He showed that it is possible to
perform a separation in four independent (commuting) parts a system of A = N + Z
nucleons moving in a harmonic oscillator well with the Hamiltonian:

Hsm =
A∑
i=1

p2
i

2m
+
K

2

A∑
i=1

r2i . (2.1)

The Hamiltonian, Hsm, can be split in the following form:

Hsm = Hn int +Hp int +HCM +HD . (2.2)
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Figure 2.1: Graphical representation of the half-period of the giant dipole resonance
in the G-T (top - notice that the protons and neutrons systems should be considered as
undistorted spheres, upper/lower arrows indicate the magnitude of the neutrons/protons
velocities) and S-J (bottom - notice that when the mode is excited, even though the
total nuclear density remains unchanged, the local proton and neutron densities change)
pictures, with the neutrons being depicted in blue, while protons in red.

The first two terms of the sum above depend only on the proton-proton and neutron-
neutron relative coordinates, and characterize the internal motions of each of the two
subsystems:

Hn int =
1

2

N∑
i,j=1

(pi − pj)
2

2m
+

1

2N

K

2

N∑
i,j=1

(ri − rj)
2 , (2.3)

and

Hp int =
1

2

Z∑
i,j=1

(pi − pj)
2

2m
+

1

2Z

K

2

Z∑
i,j=1

(ri − rj)
2 . (2.4)

The center of mass Hamiltonian, HCM, characterises an oscillatory motion of the
center of mass of the nucleus:

HCM =
1

2mA
P2

CM +
KA

2
R2

CM , (2.5)

which appears due to breaking of the translational symmetry by the spherical harmonic
oscillator potential. Finally, HD, describes the protons against the neutrons Goldhaber-
Teller type vibration [46], and is associated from a microscopic point of view to the GDR:

HD =
A

2mN Z
P2 +

KN Z

2A
X2 . (2.6)

In Eq. (2.5), the center of mass position vector, RCM:

RCM =
1

A

(
ZRp +N Rn

)
, (2.7)

with its conjugate momenta:
PCM = Pp + Pn , (2.8)
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appears. In these expressions, the position vectors of the protons and neutrons enter:

Rp =
1

Z

Z∑
i=1

ri ; Rn =
1

N

N∑
i=1

ri . (2.9)

Their conjugate momenta are:

Pp =
Z∑
i=1

pi ; Pn =
N∑
i=1

pi . (2.10)

In terms of the same quantities, the neutron-proton relative coordinate, X, has the
following expression:

X = Rp −Rn , (2.11)
while, its conjugate momenta is:

P =
NZ

A

( 1

Z
Pp −

1

N
Pn

)
. (2.12)

In the above equations, the oscillator constant, K = mω2
0, is chosen to reproduce the

observed nuclear mean square radius [47]. Since, for a nucleon in the shell defined by the
quantum number Ni, one has 〈

r2
〉
i

=
~

mω0

(
Ni +

3

2

)
, (2.13)

and the mean square radius is〈
R2
〉

=
1

A

A∑
i=1

〈
r2
〉
i

=
3

5
AR2

0 , (2.14)

we obtain:

~ω0 ≈
5

4

(3

2

)1/3 ~2

mr02
A−1/3 ≈ 40 · A−1/3 MeV . (2.15)

For the nuclear radius R0 we considered R0 = r0 A
−1/3, with r0 = 1.2 fm.

It is worth mentioning that the collective conjugate variables satisfy the usual com-
mutation relations, e.g.: [

Xα , Pβ

]
= i ~ δαβ . (2.16)

where α, β are the indices for the Cartesian components.
As a result of the mentioned decomposition of the Hamiltonian the eigenstate of the

nucleus is represented as a product of four wave-functions which are the eigenstates of
each of the above Hamiltonians:

Ψ = ψn,int χp,int α(RCM) β(X) . (2.17)

Since the only part of the state product which depends on X is the eigenfunction
β(X), for an electric dipole absorption, with the dipole operator:

D =
NZ

A
X , (2.18)

a Goldhaber-Teller collective motion is induced. The GDR wave-function will change
from the ground state β0(X), to one phonon state β1(X):

Ψ1 = ψn,int χp,int α(RCM) β1(X) . (2.19)
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2.2 From sum rules to the total dipole cross section
The behavior of the nuclear system to a dipole excitation, or, more generally, to an
excitation determined by an operator, G, is characterized by the response function. The
interaction between the system and an external field which oscillates in time with the
frequency ω, is given by the Hamiltonian, Hint [48]:

Hint = λ
(
G+ e−iωt +G eiωt

)
e η t , (2.20)

where λ controls the strength of the coupling. The exponential e η t, with η > 0 sufficiently
small, ensures that at t→ −∞ the system is in its ground state, |0〉, and is described by
the unperturbed Hamiltonian, H. Consequently, the time dependence of the perturbed
system is given by the Schrödinger equation:

(H +Hint)|ψ(t)〉 = i
∂

∂t
|ψ(t)〉 , (2.21)

where |ψ(t)〉 represents the N -body wave-function, and thus, the average value of an
arbitrary operator, F , can be expressed:

〈ψ(t)|F |ψ(t)〉 − 〈0|F |0〉 = F+ e−iωt eηt + F−eiωt eηt . (2.22)

The unperturbed Hamiltonian, H, has a set of eigenstates |n〉 defined from the equa-
tion:

H |n〉 = En |n〉 , (2.23)

where En are the corresponding eigenvalues.
Assuming that the interaction is sufficiently weak, the system response to the external

field is determined by the linear response function:

χ(F,G, ω) = lim
λ→0

F+

λ
. (2.24)

Considering F to be hermitian and equal to G, and using first order perturbation
theory, the response function can be written [48]:

χ(F, ω) = 2
∑
n

ωn0

∣∣〈n|F |0〉∣∣2
(ω + iη)2 − ω2

n0

, (2.25)

where ωn0 = En − E0 is the excitation energy. The properties of the response function
can be related to the excitation strength function [49]:

S(E) =
∑
n 6=0

∣∣〈n|F |0〉∣∣2 δ(E − (En − E0)
)
, (2.26)

which is a measure of the amplitude probability of the system to reach one of the ex-
cited states, under the effect of the perturbation, and contains all the information about
the response of the nucleus. For example, in the limit of high frequencies or very low
frequencies χ(F, ω) can be expanded as a function of ω as follows:

lim
ω→∞

χ(F, ω) =
2

ω2

(
m1 +

1

ω2
m3 + · · ·

)
, (2.27)
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and
lim
ω→0

χ(F, ω) = − 2
(
m−1 + ω2m−3 + · · ·

)
, (2.28)

where mk represents the kth moment of the strength function:

mk =

∫ ∞
0

Ek S(E) dE =
∑
n6=0

∣∣〈n|F |0〉∣∣2 (En − E0)
k . (2.29)

With the assumption that the perturbation operator F satisfies 〈0|F |0〉 = 0, the
moments of the strength function, mk, can be expressed as mean values only on the
ground state, which express the physical content of the sum rules:

mk = 〈 0 |F (H − E0)
k F | 0 〉 . (2.30)

One can proof Eq. (2.30) by expressing the squared modulus of the matrix elements
〈n|F |0〉 in Eq. (2.29):

mk =
∑
n6=0

∣∣〈n|F |0〉∣∣2 (En − E0)
k =

∑
n6=0

〈n|F |0〉 〈n|F |0〉∗ (En − E0)
k . (2.31)

Using the hermiticity of the perturbation operator F , and Eq. (2.23) one gets:

mk =
∑
n6=0

〈0|F |n〉 〈n|F |0〉 (En − E0)
k = 〈0|F (H − E0)

k
∑
n6=0

|n〉〈n|F |0〉 . (2.32)

Since the eigenstates form a complete system (i.e.
∑
|n〉〈n| = I), one easily arrives

to Eq. (2.30). Moreover, one can express these moments, mk, in terms of expectation
values on ground state of commutators or anticommutators of the Hamiltonian, H, with
the perturbation operator, F . For example:

m0 =
1

2

〈
0
∣∣ {F, F} ∣∣0〉 , (2.33)

m1 =
1

2

〈
0
∣∣ [F, [H,F ]]

∣∣0〉 , (2.34)

m2 =
1

2

〈
0
∣∣ {[F,H], [H,F ]

} ∣∣0〉 , (2.35)

m3 =
1

2

〈
0
∣∣ [[F,H], [H, [H,F ]]

] ∣∣0〉 . . . (2.36)

The proof of Eq. (2.33) is straightforward, for Eq. (2.34) one has:

m1 = 〈0|F (H − E0)F |0〉 = 〈0|F (HF − FE0)|0〉 = 〈0|F (HF − FH)|0〉
= 〈0|F [H,F ]|0〉 . (2.37)

In the same manner, one can also write:

m1 = 〈0|F (H − E0)F |0〉 = 〈0|(FH − E0F )F |0〉 = 〈0|(FH −HF )F |0〉
= 〈0|[F,H]F |0〉 . (2.38)
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Summing up Eqs. (2.37) and (2.38), one gets:

m1 =
1

2

(
〈0|F [H,F ]|0〉+ 〈0|[F,H]F |0〉

)
=

1

2

(
〈0|F [H,F ]|0〉 − 〈0|[H,F ]F |0〉

)
=

1

2

〈
0
∣∣[F, [H,F ]

]∣∣0〉 . (2.39)

Using similar procedures one can also proof the remaining expressions for the moments
of the strength function, mk.

We shall now return to the perturbation of the nuclear system, upon the action of a
dipolar excitation, which can determine the transition from the ground state to one GDR
phonon state. The cross section for the excitation of the system to the final state |f〉, by
absorbing a photon of energy E, is given by [50]:

σf (E) =
4 π2e2

~ c
(Ef − E0)

∣∣〈f |D|0〉∣∣2 δ(E − Ef + E0) , (2.40)

where Ef and E0 are the energies of the system in the final and ground state respectively.
The dipolar cross section for the absorption of a photon of energy E, is obtained by
summing over all final states, where we remark the appearance of the strength function:

σ(E) =
∑
f

σf (E) =
4π2e2

~c
∑
f

(Ef − E0)
∣∣〈f |D|0〉∣∣2 δ(E − Ef + E0)

=
4π2e2

~ c
E S(E) . (2.41)

The total dipole absorption cross section is obtained from Eq. (2.41) integrating over
photon energies, E:

σD =

∫ ∞
0

σ(E) dE =
4 π2e2

~ c
∑
f

(Ef − E0)
∣∣〈f |D|0〉∣∣2 , (2.42)

being proportional to the first moment of the strength function. Therefore, with the
help of Thomas-Reiche-Kuhn sum rule, which provides the moment, m1, in terms of
expectation values of double commutator of the dipole operator with the Hamiltonian,
on ground state, we have:

σD =
4π2e2

~ c
m1 =

4π2e2

~c
1

2

〈
0
∣∣[D, [Hsm, D]]

∣∣0〉
=

2 π2e2

~ c
〈
0
∣∣[D, [HD, D]]

∣∣0〉 , (2.43)

since the only part of the HOSM Hamiltonian, Hsm, which does not commute with the
dipole operator is HD, more specifically, only its kinetic energy part. It is straightforward
that:

[HD, D] =
A

2mNZ

NZ

A
[P2,X] =

1

2m

(
P [P,X] + [P,X]P

)
= − i~

m
P , (2.44)
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and so:〈
0
∣∣ [D, [HD, D]]

∣∣0〉 =
〈
0
∣∣[NZ

A
X ,−i~

m
P
]∣∣0〉 =

〈
0
∣∣ ~2
m

NZ

A

∣∣0〉 =
~2

m

NZ

A
〈0|0〉

=
~2

m

NZ

A
. (2.45)

Consequently, the total dipole absorption cross section, which represents the energy-
weighted sum rule for the dipole operator becomes:

σD =
2π2e2

~c
~2

m

NZ

A
= 60

NZ

A
mb MeV . (2.46)

It was experimentally observed, that in medium- and heavy-nuclei, the GDR exhausts
practically almost 100% of the sum rule, indicating that the GDR corresponds to a state
D|0〉, resulting from the action of the dipole operator on the ground state.

2.3 Pygmy dipole resonance in a Harmonic Oscillator
Shell Model

In this section we shall extend the work of Brink [45], briefly described previously, to
the case of neutron-rich nuclei. In this case, we consider the system as being described
in terms of three subsystems: (i) all protons, Z, (ii) a number of bound neutrons, Nc,
and (iii) the less bound excess neutrons, Ne. Hence, the total number of neutrons is split
between the core and excess neutrons, so that N = Nc + Ne is satisfied, while, the first
two subsystem define the core, Ac = Z+Nc. Our aim is to perform an analogous decom-
position of the HOSM Hamiltonian (see Eq. (2.1)) into several commuting Hamiltonians,
one of them associated to the pygmy motion i.e. the out of phase oscillations of the
excess neutrons against the core. In order to achieve this, we shall replace the collective
coordinates associated to the center of mass of protons, core and excess neutrons:

Rp =
1

Z

Z∑
i=1

ri ; Rnc =
1

Nc

Nc∑
i=1

ri , Rne =
1

Ne

Ne∑
i=1

ri , (2.47)

and their conjugate momenta:

Pp =
Z∑
i=1

pi ; Pnc =
Nc∑
i=1

pi , Pne =
Ne∑
i=1

pi , (2.48)

with a different set of collective variables, including the pygmy degree of freedom. Con-
sequently, we first introduce the center of mass position vector:

RCM =
1

A

(
ZRp +NcRnc +NeRne

)
, (2.49)

with its conjugate momenta:

Pcm = Pp + Pnc + Pne . (2.50)
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Then, we define the distance between the center of mass of the protons and core
neutrons:

Xc = Rp −Rnc , (2.51)

with its conjugate momenta:

Pc =
NcZ

Ac

(
Pp

Z
+

Pnc

Nc

)
. (2.52)

Eventually, the last set of variables will account for the distance between the center
of mass of the core and the excess neutrons:

Y =
Z

Ac
Rp +

Nc

Ac
Rnc −Rne , (2.53)

and the corresponding conjugate momenta:

Py =
NeAc
A

(
Pp + Pnc

Ac
+

Pne

Ne

)
. (2.54)

With these new variables defined, we should return to the HOSM Hamiltonian (Eq.
(2.1)) and expand the sums over position vectors and momenta with the help of the
following expansion:

A∑
i=1

xi

A∑
j=1

xj =
A∑

i,j=1

(xi − xj + xj)(xj − xi + xi)

=
A∑

i,j=1

(xi − xj)(xj − xi) +
A∑

i,j=1

x2
i +

A∑
i,j=1

x2
j −

A∑
i,j=1

xixj ; (2.55a)

2A
A∑
i=1

x2
i = 2

A∑
i=1

xi

A∑
j=1

xj +
A∑

i,j=1

(xi − xj)
2 (2.55b)

where xi ∈ {ri,pi}. Consequently, considering also Eqs. (2.47) and (2.48), we get for
position vectors:

B∑
i=1

r2i = BR2
b +

1

2B

B∑
i,j=1

(ri − rj)
2 , (2.56)

and for conjugate momenta:

B∑
i=1

p2
i =

1

B
P2
b +

1

2

B∑
i,j=1

(pi − pj)
2 , (2.57)

where b ∈ {p, nc, ne} and B ∈ {Z,Nc, Ne}.
Using Eq. (2.56) the potential energy part of the HOSM Hamiltonian, Hsm, becomes:

A∑
i=1

r2i = ZR2
p +NcR

2
nc +NeR

2
ne + internal terms . (2.58)
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We replace the position vectors associated to the center of mass of protons, core and
excess neutrons with the previously defined collective variables Rcm,Xc and Y, using the
relations:

Rp = Rcm +
Ne

A
Y +

Nc

Ac
Xc ,

Rnc = Rcm +
Ne

A
Y − Z

Ac
Xc , (2.59)

Rne = Rcm −
Ac
A

Y .

Then, Eq. (2.58) becomes:
A∑
i=1

r2i = AR2
cm +

NeAc
A

Y2 +
NcZ

Ac
X2
c + internal terms , (2.60)

Analogously, using Eq. (2.57), the kinetic energy part of the HOSM Hamiltonian can
be written:

A∑
i=1

p2
i =

1

Z
P2
p +

1

Nc

P2
nc +

1

Ne

P2
ne + internal terms . (2.61)

Now, we replace the conjugate momenta of all protons, core and excess neutrons, in
terms of the collective momenta, by employing the relations:

Pp =
Z

A
Pcm +

Z

Ac
Py + Pc ,

Pnc =
Nc

A
Pcm +

Nc

Ac
Py −Pc , (2.62)

Pne =
Ne

A
Pcm −Py .

One gets for Eq. (2.61) :
A∑
i=1

p2
i =

1

A
P2
cm +

A

AcNe

P2
y +

Ac
ZNc

P2
c + internal terms . (2.63)

Summing up Eq. (2.60) and Eq. (2.63) into Eq. (2.1) we reach the following decom-
position, in terms of six commuting Hamiltonians [51, 52]:

Hsm = Hp,int +Hnc,int +Hne,int +HCM +Hc +Hy =

= Hp,int +Hnc,int +Hne,int +
1

2Am
P2
cm +

KA

2
R2
cm

+
Ac

2ZNcm
P2
c +

KNcZ

2Ac
X2
c +

A

2AcNem
P2
y +

KNeAc
2A

Y2 . (2.64)

As previously stated, the first three terms describe the internal motion of nucleons in
each ensemble, and depend only on the relative coordinates and momenta of the nucleons
belonging to each subsystem (protons, neutrons core and neutrons in excess):

Hp,int =
1

2

Z∑
i,j=1

(pi − pj)
2

2m
+

1

2Z

K

2

Z∑
i,j=1

(ri − rj)
2 , (2.65)
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Hnc,int =
1

2

Nc∑
i,j=1

(pi − pj)
2

2m
+

1

2Nc

K

2

Nc∑
i,j=1

(ri − rj)
2 , (2.66)

and

Hne,int =
1

2

Ne∑
i,j=1

(pi − pj)
2

2m
+

1

2Ne

K

2

Ne∑
i,j=1

(ri − rj)
2 . (2.67)

The center of mass Hamiltonian:

HCM =
1

2Am
P2
cm +

KA

2
R2
cm , (2.68)

characterizes the center of mass motion of the nuclear system.
The core Hamiltonian:

Hc =
Ac

2Z Ncm
P2
c +

KNc Z

2Ac
X2
c , (2.69)

describes the isovector Goldhaber-Teller vibration of protons against the core neutrons.
The pygmy Hamiltonian:

Hy =
A

2AcNem
P2
y +

KNeAc
2A

Y2 , (2.70)

instead, is characteristic to the Goldhaber-Teller mode of the excess neutrons against the
core, and represents the so-called pygmy mode. It is worth mentioning that both Hc and
Hy will contribute to the dipole response, since the total dipole operator can be expressed
as a sum of the core and pygmy dipole operators:

D =
NZ

A
X =

NZ

A

(
Rp −Rn

)
=
NZ

A

(
Ne

N
Y +

ANc

AcN
Xc

)
=
Z Ne

A
Y +

Z Nc

Ac
Xc

= Dy + Dc . (2.71)

The total dipole absorption cross section corresponding to the excitation of the pygmy
mode, can be estimated:

σy =

∫ ∞
0

σy(E) dE =
4 π2e2

~ c
∑
f

(Ef − E0)
∣∣〈f |Dy|0〉

∣∣2
=

4 π2e2

~ c
m1y =

4π2e2

~ c
1

2
〈0|[Dy, [Hsm, Dy]]|0〉

=
2 π2e2

~ c
〈
0
∣∣[Dy, [Hy, Dy]

]∣∣0〉 . (2.72)

Evaluating the commutator one has:

[Hy, Dy] =
A

2mAcNe

NeZ

A
[P2

y,Y] =
Z

2mAc

(
Py[Py,Y] + [Py,Y]Py

)
= − i~Z

mAc
Py . (2.73)
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Figure 2.2: Graphical representation for the fraction, fy = (NeZ)/(NAc), of the EWSR
exhausted by the pygmy mode for tin isotopes 128Sn, 130Sn, 132Sn and 134Sn, at various
number of neutrons in the core.

Then:

〈0|[Dy, [Hy, Dy]]|0〉 =
〈
0
∣∣[NeZ

A
Y,− i~Z

mAc
Py

]∣∣0〉
=
〈
0
∣∣~2
m

NeZ
2

AAc

∣∣0〉 =
~2

m

NeZ
2

AAc
〈0|0〉 =

~2

m

NeZ
2

AAc
. (2.74)

Eventually, the EWSR exhausted by the pygmy mode is obtained:

σy =
2π2e2

~c
~2

m

NeZ
2

AAc
=
NeZ

NAc
σD . (2.75)

This shows that a specific fraction, fy =
NeZ

NAc
, depending on the number of excess

neutrons from the total absorption cross section is exhausted by the PDR. We mention
that this result is consistent with the molecular sum rule introduced by Alhassid and
coworkers [53]. Moreover, within the sum-rule model approach, proposed by Kurasawa
and Suzuki [54] an identical expression was obtained for the EWSR exhausted by the
PDR.

If we consider the case of tin isotope 132Sn, with the number of excess neutrons taken
to be the difference between the total number of neutrons and protons, Ne = N−Z = 32,
a particular fraction, fy = 19.5%, exhausted by the pygmy mode is obtained (see also
Fig. 2.2). This value is larger than the experimentally estimated value, which is roughly
4% [8]. A possible explanation for the difference between the HOSM prediction and the
experimental value, is that only a part of all the excess neutrons contribute to the pygmy
mode, the rest being bound to the core. Actually, a core containing 50 neutrons and 50
protons is expected to be quite unstable, so, an additional number of excess neutrons
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Figure 2.3: Graphical representation for the fraction, fy = (NeZ)/(NAc), of the EWSR
exhausted by the pygmy mode for calcium isotopes 40Ca, 42Ca, 44Ca, 46Ca, 48Ca a and
50Ca, at various number of neutrons in the core.

will be bound to the core, making it more stable. To obtain a fraction of the EWSR
close to the experimental value of 4%, we have to assume that only an effective number
of Ny = 10 neutrons will participate in the pygmy mode, while the rest of 22 are blocked
in the core. A similar conclusion was traced by Adrich et al. [8].

We extend now our analysis to other neutron rich calcium, nickel and lead isotopes.
In the case of calcium isotope, 48Ca, Ottini-Hustache et al. [18] have reported a fraction
of about 5% of the electric dipole (E1) EWSR exhausted by the pygmy mode, whereas
Hartmann et al. [19] found a value of 0.3%. In the symmetric isotope, N = Z = 20,
40Ca, no PDR strength was found [19]. This is consistent with the results proposed by
HOSM, since the excess number of neutrons in this case is 0. In the case of 48Ca, the
EWSR exhausted by the pygmy mode, as predicted by HOSM (see Fig. 2.3), varies from
∼ 14% (when considering N = Z = 20 and Ny = Ne = 8) to ∼ 6% (when the number of
skin neutrons is reduced to Ny = 4).

For the nickel isotope 68Ni, with the number of excess neutrons taken to be the
difference between the total number of neutrons and protons, Ne = N − Z = 12, the
corresponding EWSR exhausted by the pygmy mode would be fy = 15%. Wieland et
al. reported in their experimental study [22] an EWSR between 5% → 9%, the largest
value corresponding to the case where the level density was assumed to be a simple
extrapolation from stable nuclei. If a more stable core is considered, Nc = 32 (so Ny = 8),
the predicted EWSR exhausted by the PDR decreases to fy ≈ 9% (see Fig. 2.4), much
closer to the experimental result. Moreover, for the nickel isotope 68Ni, within a quasi-
particle relativistic random phase approximation approach, Cao and Ma [55] reported a
percentage of 10% of the EWSR exhausted in the low-lying region.

If we now consider lead isotopes, in particular 208Pb, Ryezayeva et al. [56] have
reported a fraction, fy = 2% of the total E1 strength in the low-lying energy region. For
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Figure 2.4: Graphical representation for the fraction, fy = (NeZ)/(NAc), of the EWSR
exhausted by the pygmy mode for nickel isotopes 58Ni, 60Ni, 62Ni, 64Ni, 66Ni, and 68Ni,
at various number of neutrons in the core.

Figure 2.5: Graphical representation for the fraction, fy = (NeZ)/(NAc), of the EWSR
exhausted by the pygmy mode for lead isotopes 206Pb, 207Pb, 208Pb, 210Pb, 212Pb and
214Pb, at various number of neutrons in the core.
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the same isotope, within HOSM, the predicted fraction is around fy ≈ 17.5%, when all
the excess neutrons are involved in the pygmy oscillations (i.e. Ny = Ne = 44)(see Fig.
2.5). Considering now a more stable core, comprising Nc = 124 neutrons and Z = 82
protons, the EWSR exhausted by the pygmy mode gets closer to fy ≈ 1%, with only 2
neutrons belonging to the skin (i.e. Ny = 2).

Considering the above examples, it is clear that the EWSR exhausted by the pygmy
mode overestimates the experimental data, if all the excess neutrons are considered to take
part in the pygmy oscillations against the symmetric Nc = Z core. A better agreement
with the experimental results is achieved if one consider a more stable core, which, in
general, requires an Nc > Z neutrons. In this case a smaller number of neutrons involved
in the pygmy motion, Ny < Ne, leads to a smaller fraction of the EWSR exhausted.
Therefore, it is important to test in more elaborated and self-consistent approaches, this
possibility.

Indeed, a more accurate picture of the dipole response in finite nuclear matter cor-
responds to an admixture of Goldhaber-Teller and Steinwedel-Jensen vibrations. Con-
sequently, the HOSM model, although powerful in providing a microscopic Hamiltonian
picture of the pygmy and giant dipole responses, is yet unable to describe such an ad-
mixture.

In this respect, we shall consider a microscopic, self-consistent transport approach
within the Landau theory of Fermi liquids aimed to investigate various dipole collective
features of nuclear systems. In particular, we shall study the interplay between pygmy
and isovector core vibration, and we will test the hypothesis suggested by the HOSM
concerning the number of neutrons associated to the pygmy motion. In this model, the
proton and neutron one-body distribution functions, fp,n(r,p, t), are obtained by solving
two coupled Landau-Vlasov kinetic equations. This model was successfully employed to
study various features of the GDR in hot nuclei [57], the pre-equilibrium excitation of
the dipole mode in fusion entrance channel [58, 57], as well as in the description of the
transition from isovector zero sound to first sound in symmetric nuclear matter [59, 60].
Since the main ingredients of this method are the mean-field and the kinetic equations,
we shall devote the next Chapter for their description.
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Chapter 3

Transport approach to nuclear
dynamics

Traditional ab initio methods, in particular Hartree-Fock theory and its descendants, are
based on the finding of the many-body wave-function of the system. Once the Hamilto-
nian is introduced, a variational principle problem is solved within an appropriate trial
space. However, when considering realistic systems, these theories are difficult to be
applied, the computational cost being one of the reasons. For nuclear systems, due to
the presence of the short-range repulsive core, such theories lead to quite inaccurate
results. It is concluded that in general, the nuclear many-body problem manifests sev-
eral non-perturbative features with respect to the independent particle models. Even
for the soft-core interactions, which allows for a perturbative description of the nuclear
many-body problem, the lowest order is not sufficient to reach a convergent solution.
Therefore, in nuclear physics, a different direction, namely the nuclear energy density
functional (EDF), was adopted to treat still rigorously the problem of strongly inter-
acting nucleons. This approach has many common features with the density functional
theory, which was proposed initially for the description of electronic systems. The basic
idea is to map the original interacting problem into an approach based on an independent
particle description. DFT is based on the work of Hohenberg and Kohn(H-K) [61], which
states that the problem of interacting particles within an external statical potential can
be reduced to a non-interacting problem, where the energy is a functional of the local
density. In the non-interacting problem, the particle move within a local effective poten-
tial, which can be expressed as a functional of the local density. The minimum of this
functional, obtained variationally, coincides with the ground state energy of the inter-
acting problem, while the corresponding density matches the local density of the initial
system. Hohenberg and Kohn prove the existence of an unique functional of the den-
sity which determines exactly the external potential, and thus the ground-state energy,
but gives no hint whatsoever on how this functional looks like. To construct the exact
functional, several degrees of approximation have been proposed, including local density
approximation (LDA), gradient expansion approximation (GEA) or generalized gradient
approximation (GGA), where higher orders of density gradients were added.

The ideas behind density functional theory can be also applied to nucleons interacting
trough the strong force within nuclear systems. In contrast to electronic systems, the self
bound nature of the nuclei makes the original H-K work not entirely applicable (since there
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is no external potential that confines the nucleons), thus, the energy density functional
has been rather empirically introduced in the 70’s [62]. Consequently, this implies the
necessity to develop nuclear energy density functionals, in which the energy of the system
is described in terms of proton and neutron densities.

Two phenomenological functionals of energy, namely the Gogny and Skyrme ones,
are based on effective nucleon-nucleon interactions and are suitable for the description of
nuclear matter properties. In particular, the effective nucleon-nucleon interaction in the
Skyrme approach can be represented as a sum of two-body and three-body interactions
[63]

V =
∑
i<j

Vij +
∑
i<j<k

Vijk . (3.1)

The zero-range two-body operators, Vij, in the above equation have the following form
[64, 65]:

Vij = t0 (1 + x0Pσ) δ(ri − rj) +
1

2
t1 (1 + x1Pσ)

[
(k′)2 δ(ri − rj) + δ(ri − rj)k

2
]

+ t2(1 + x2Pσ)k′ δ(ri − rj)k +
1

6
t3 (1 + x3Pσ) δ(ri − rj) ρ

α
(ri + rj

2

)
+ i t4 (σi + σj) [k′ × δ(ri − rj) k] , (3.2)

with k being the operator of the relative momentum:

k =
1

2i

(
∇i −∇j

)
, (3.3)

acting on the right direction, and with k′:

k′ = − 1

2i

(
∇i −∇j

)
, (3.4)

acting on the left direction. The spin exchange operator, Pσ, has the form:

Pσ =
1

2

(
1 + σi · σj

)
. (3.5)

In the above sum, the first term is associated to the central-part of the interaction,
the terms with t1 and t2 characterise the non-local interaction, while the term with t4 is
related to the spin-orbit interaction. The three-body operators, Vijk, correspond also to
a zero-range interaction:

Vijk = t3 δ(ri − rj) δ(ri − rk) , (3.6)

and, which, integrated over the coordinates of one of the particles, generates a two-body
contact interaction dependent on the local density. The ground state energy of the system,
considering the wave function to be a single Slater determinant, can be derived using the
Hartree-Fock method:

E0 = 〈ψ|T + V |ψ〉 =

∫
d3r E (r) , (3.7)
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where E (r) = Ekin(r) + Epot(r) represents the energy density functional. Even if, in this
case, the functional was obtained from an effective interaction and a many-body method,
there are several subtle differences between HF and EDF approach. In any case, the
coefficients factorizing various terms, local density and density gradient dependent, are
adjusted by requiring that a set of experimental properties are reproduced. Therefore,
these coefficients encode more physics than those provided within HF theory. For ex-
ample, for our Skyrme functional, the coefficients are fixed requiring that the saturation
density, the binding energy at saturation, the incompressibility modulus, the symmetry
energy at saturation and other properties are reproduced.

Knowing the energy density, one can also find the main ingredient required within the
transport model, namely, the mean field potential, U = δEpot(r)/δρ(r). Consequently,
employing the energy density functional technique allows us to obtain a self-consistent
nuclear mean-field, subsequently used in the description of the dynamics of nuclear ex-
citations, in particular the dipolar response. The dynamics of the nuclear systems is
described using a semi-classical transport approach based on two coupled Landau-Vlasov
kinetic equations for protons and neutrons. In the next section we shall describe in detail
the properties of the energy density functional which will be employed into the transport
model.

3.1 Energy density functional for nuclear systems
The energy density functional, from a thermodynamical point of view, can be seen as
the nuclear equation of state (EOS) at zero temperature. Nuclear matter is an ideal
system which contains two components, neutrons and protons, and, as a result, the EOS
depends on both proton and neutron densities. Alternatively, it is possible to introduce
other degrees of freedom, total or isoscalar density (ρisoscalar = ρ = ρn + ρp) and isospin
or isovector density (ρisovector = ρi = ρn − ρp). In this case, the total energy per nucleon
can be written as [66, 67]:

E

A
(ρ, I) =

E

A
(ρ) +

Esym
A

(ρ) I2 , (3.8)

where E
A

(ρ) describes the properties of symmetric nuclear matter, for which the isospin
parameter:

I =
ρi
ρ

=
N − Z
A

, (3.9)

becomes zero. It is obvious that the relation between the total energy per nucleon and
the volume energy density provided by the energy density functional, E (ρ), is:

E (ρ) = Ekin + Epot =
E(ρ)

V
=
E(ρ)

A

A

V
= ρ

E

A
(ρ) . (3.10)

The pressure of the system, at zero temperature, is given by:

P = − ∂E

∂V
. (3.11)
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If, instead of the volume, we consider as the variable the density, ρ = A/V , considering
that the total number of nucleons remains constant, we can write:

dV = − V
2

A
dρ , (3.12)

and, consequently, we obtain the pressure as:

P =
A

V 2

dE

dρ
=
A2

V 2

d(E/A)

dρ
= ρ2

dε

dρ
, (3.13)

with ε = E/A = εkin + εpot. At saturation density (equilibrium) the pressure should
be equal to zero, P (ρ0) = 0. An important thermodynamical response function is the
compressibility, β :

β = − 1

V

∂V

∂P
=

1

ρ

∂ρ

∂P
, (3.14)

which characterises the variation of the nuclear density with the pressure. Considering
its inverse form, while taking into account Eq. (3.11), we have:

β−1 = V
∂2E

∂V 2
= ρ3

d2(E/A)

dρ2
= ρ3

d2ε

dρ2
, (3.15)

where we used the density as variable instead of the volume. We can now define the
nuclear incompressibility modulus, K:

K =
9

ρ
β−1 = 9 ρ2

d2 ε

dρ2
. (3.16)

At saturation, the nuclear incompressibility modulus is a measure of the curvature
parameter of the EOS, as a function of the density. Moreover, it can also be linked to the
sound velocity which propagates in nuclear matter. Taking into account the experimen-
tal information, we shall require that, at saturation, the symmetric nuclear matter has
the following properties: (i) the equilibrium density ρ0 = 0.16 fm−3, (ii) the energy per
nucleon E/A(ρ0) = −16 MeV/nucleon, while (iii) the incompressibility modulus corre-
sponds to a soft-EOS K(ρ0) = 201 MeV, and information about its value can be obtained
from giant monopole resonances studies [64].

Returning to Eq. (3.10), for the kinetic part, taking into account the dependence of

the density on the Fermi momentum, ρn,p =
k3Fn,p
3π2

, we can write:

Ekin =

∫ ρn

0

p2F,n(ρ′)

2m
dρ′ +

∫ ρp

0

p2F,p(ρ
′)

2m
dρ′

=
~2

2m
(3π2)2/3

[ ∫ ρn

0

ρ′ 2/3n dρ′n +

∫ ρp

0

ρ′ 2/3p dρ′p

]
=

3

5

~2

2m
(3π2)2/3

[
ρ5/3n + ρ5/3p

]
. (3.17)

Considering now the isospin parameter, I = (N − Z)/A, and

ρn =
ρ

2
(1 + I) (3.18a)

ρp =
ρ

2
(1− I) , (3.18b)

24



we have
Ekin =

3

5

~2

2m
(3π2)2/3

1

25/3
ρ5/3

[
(1 + I)5/3 + (1− I)5/3

]
. (3.19)

Thus, we can write:

E

A
(ρ, I)kin =

Ekin

ρ
=

3

5
εF (ρ)

1

2

[
(1 + I)5/3 + (1− I)5/3

]
, (3.20)

with the Fermi energy:

εF (ρ) =
~2

2m

(3π2

2

)2/3
ρ2/3 . (3.21)

Now, if we recall the symmetry energy coefficient definition, asym = Esym/A = εsym
(see Eq. 3.8)), in the Bethe-Weizsäcker mass formula [68]:

asym =
1

2

∂2

∂I2
E

A
(ρ, I)

∣∣∣∣
I=0

, (3.22)

we obtain the kinetic contribution to the symmetry energy:

(
εsym

)
kin

=
3

5
εF (ρ)

1

4

∂2

∂I2
[
(1 + I)5/3 + (1− I)5/3

]∣∣∣∣
I=0

=
3

5
εF (ρ)

1

4

4 · 5
9

=
1

3
εF (ρ) . (3.23)

Comparing with a value for asym provided by the Bethe-Weizsäcker formula, asym =
28 → 32 MeV, we observe that the kinetic contribution, essentially related to the Pauli
correlations, represents less than a half. The rest of the contribution to the symmetry
energy is the result of the properties of the nucleon-nucleon interaction, specifically, the
interaction in the isovector channel:

εsym ≡
Esym

A
(ρ) =

(
εsym

)
kin

+
(
εsym

)
pot

. (3.24)

For example, for a simplified Skyrme-like force [68]:

Vij = t0 (1 + x0Pσ) δ(ri − rj) +
1

6
t3 (1 + x3Pσ)

(
ρ
ri + rj

2

)σ−1
δ(ri − rj) , (3.25)

with the coefficients:

t0 = −2973 MeV · fm3 (3.26a)

t3 = 19034 MeV · fm(3×σ) (3.26b)

x0 = 0.025 , x3 = 0 , σ =
7

6
, (3.26c)

the interaction contribution to the energy density functional has the form:

Epot(ρ, ρi) =
Epot
V

=
Epot
A

A

V
=
A

2

ρ2

ρ0
+

B

σ + 1

ρσ+1

ρσ0
+
C(ρ)

2

ρ2i
ρ0

, (3.27)
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Figure 3.1: Graphical representation of the density dependence of the symmetry energy

per nucleon,
Esym

A
, (expressed in Eq. (3.32)) for different parametrizations of the sym-

metry energy: solid blue for asy-soft, dot-dashed black for asy-stiff and dashed red for
asy-superstiff, the isospin parameter I corresponding to 132Sn isotope.

where:

A =
3

4
t0 ρ0 , (3.28)

B =
σ + 1

16
t3 ρ

σ
0 , (3.29)

C(ρ) = −1

4
ρ0

[
t0(1 + 2x0) +

t3
6

(1 + 2x3)ρ
σ−1
]
. (3.30)

Consequently, in this case, the potential part of the symmetry energy is:(Esym

A

)
pot
I2 =

1

ρ

C(ρ)

2

ρ2i
ρ0(Esym

A

)
pot

ρ2i
ρ2

=
1

ρ

C(ρ)

2

ρ2i
ρ0(Esym

A

)
pot

=
(
εsym

)
pot

=
C(ρ)

2

ρ

ρ0
, (3.31)

and finally we obtain:

εsym ≡
Esym

A
(ρ) =

(
εsym

)
kin

+
(
εsym

)
pot

=
1

3
εF (ρ) +

C(ρ)

2

ρ

ρ0
. (3.32)

Around the saturation point, the symmetry energy dependence on density is charac-
terized by the values of the coefficients L and Ksym appearing in the expansion up to the
second order of εsym(ρ) [66, 69]:

εsym(ρ) = εsym(ρ0) +
L

3

(
ρ− ρ0
ρ0

)
+
Ksym

18

(
ρ− ρ0
ρ0

)2

, (3.33)
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where L represents the slope parameter and Ksym represents the curvature of the nuclear
symmetry energy at saturation density. More specifically, the slope parameter is defined
as:

L = 3 ρ0
dεsym
dρ

∣∣∣∣
ρ=ρ0

, (3.34)

and the curvature parameter as:

Ksym = 9 ρ20
d2εsym
d2ρ

∣∣∣∣
ρ=ρ0

. (3.35)

It is useful to link the slope and curvature parameters to other physical properties
which are more meaningful. We can express the slope parameter, L, in terms of the
symmetry pressure:

L =
3

ρ0
Psym(ρ0) , (3.36)

where
Psym = ρ2

dεsym
dρ

∣∣∣∣
ρ=ρ0

, (3.37)

For asymmetric nuclear matter characterised by the isospin parameter, I, the shift
of the equilibrium density and incompressibility can be expressed in terms of these two
coefficients:

∆ρ0(I) =
3 ρ0 L

K(I = 0)
I2 < 0 , (3.38)

and
∆K(I) = (Ksym − 6L) I2 < 0 . (3.39)

Now, in the spirit of EDF formalism, in the following Chapters we shall resume to
a potential energy density defined by Eq. (3.27). The mean-field potentials for protons
(neutrons) can be expressed as the functional derivative of Epot with respect to the proton
(neutron) density [68, 70]:

Up =
δEpot

δρp
= A

ρ

ρ0
+B

( ρ
ρ0

)σ
− C(ρ)

ρi
ρ0

+
1

2

dC(ρ)

dρ

ρ2i
ρ0

, (3.40)

Un =
δEpot

δρn
= A

ρ

ρ0
+B

( ρ
ρ0

)σ
+ C(ρ)

ρi
ρ0

+
1

2

dC(ρ)

dρ

ρ2i
ρ0

. (3.41)

A commonly used parametrization for the isoscalar mean-field channel, corresponding
to a so-called "hard EOS", characterised by a large value of incompressibility (K(ρ0) =
380 MeV) is given by:

Un,p = −124 MeV
ρ

ρ0
+ 70.5 MeV

( ρ
ρ0

)2
. (3.42)

However, experimental indications favors a "soft EOS" with K(ρ0) = 201 MeV:

Un,p = −356.8 MeV
ρ

ρ0
+ 303.9 MeV

( ρ
ρ0

)7/6
, (3.43)
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Figure 3.2: Graphical representation of the density dependence of the symmetry con-
tribution to the mean field, (Up,n)sym, for protons (see Eq. (3.40)) - lower curves and for
neutrons (see Eq. (3.41)) - upper curves, for different parametrizations of the symmetry
energy: solid blue line for asy-soft, dot-dashed black line for asy-stiff and dashed red line
for asy-superstiff, the isospin parameter I corresponding to 132Sn isotope.

Figure 3.3: Graphical representation of the density dependence of the energy per nucleon,
E
A
, (expressed in Eq. (3.8)) for different parametrizations of the symmetry energy: solid

blue line for asy-soft, dot-dashed black line for asy-stiff and dashed red line for asy-
superstiff, the isospin parameter I corresponding to 132Sn isotope, and for symmetric
nuclear matter, E

A

∣∣
I=0

: dotted black line.
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Figure 3.4: Graphical representation of the density dependence of the energy per nucleon
in symmetric nuclear matter, E

A

∣∣
I=0

(black line), and in neutron matter, E
A

∣∣
I=1

, for an
asy-stiff parametrization of the symmetry term, i.e. C = 32 MeV (red line).

which we will employ in our numerical simulations.
However, the knowledge of the equation of state for asymmetric nuclear matter beyond

normal conditions remains still poor. Based on the philosophy of EDF, while keeping the
value of symmetry energy at saturation almost the same, we shall allow for three different
dependences with density away from equilibrium. For the asy-soft EOS we imply a SKM*
parametrisation, in which the symmetry term manifests an almost flat dependence around
saturation density, and a slow decrease towards higher densities (a small slope parameter,
L). For the asy-stiff EOS the dependence on the density of C(ρ) is constant (i.e C(ρ)
= constant ≈ 32 MeV), and thus, the symmetry term will linearly increase with respect
to the nuclear density. Lastly, for the asy-superstiff EOS, the symmetry term increases

rapidly around saturation density, proportional to
ρ2

ρ0(ρ+ ρ0)
(see also Fig. 3.1). It

becomes clear that, away from the saturation density, ρ0 = 0.16 fm−3, the mean field
perceived by protons and neutrons are different for the three equations of state introduced
(see also Fig. 3.2).

Lastly, we represent in Fig. 3.3 the density dependence of the energy per nucleon
for an isospin parameter corresponding to 132Sn isotope, and in Fig. 3.4 the density
dependence of the energy per nucleon in symmetric nuclear matter.

3.2 Landau-Vlasov kinetic equations
This section is devoted to an analysis of the basic features of the Landau-Vlasov equation.
In the first part, by employing the Wigner transform, we prove that the Vlasov equation
for one-body distribution function represents the semi-classical approximation of the time
dependent Hartree-Fock equations. We will closely follow the work of Bertsch and Das
Gupta [71], and, for consistency, in addition, several detailed proofs will be presented.
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Then, this equation will be solved analytically in the linear approximation. The solution
represents a quantum collective mode named zero-sound. Both the isoscalar and isovector
modes in nuclear matter are described and the role of the symmetry energy in the later
case will be addressed.

To deduce the Vlasov equation, we shall first express the time dependent HF equations
in terms of the one-body density matrix. This is defined as:

ρji = 〈ψ|a†iaj|ψ〉 , (3.44)

where |ψ〉 is a single determinant representing the many-body wave function, while the
annihilation and creation operators, ai, a†i , refers to an arbitrary single-particle complete
basis. The time derivative of the matrix elements, ρji, is given by:

ρ̇ji =
∂

∂t

(
〈ψ|a†iaj|ψ〉

)
=

∂

∂t
〈ψ|a†iaj|ψ〉+ 〈ψ|a†iaj

∂

∂t
|ψ〉 . (3.45)

Using the time-dependent Schrödinger equation:

∂

∂t
|ψ〉 =

1

i~
H|ψ〉 , (3.46)

and its adjoint conjugate, one can write Eq. (3.45):

ρ̇ji =
1

i~
〈ψ|[a†iaj, H]|ψ〉 =

1

i~
〈ψ|[a†i , H]aj + a†i [aj, H]|ψ〉 . (3.47)

Here the exact Hamiltonian, H, is expressed as a sum between the kinetic and poten-
tial energy operators, in the occupation number representation:

H = T + V =
∑
pq

tpq a
†
p aq +

1

2

∑
prqs

vprqs a
†
p a
†
r as aq , (3.48)

where tpq and vprqs represent one-body and two-body matrix elements respectively. To
obtain the time derivative of the density matrix, we have to evaluate the commutators of
the creation and annihilation operators with the kinetic and potential energy operators.
One should keep in mind that for fermions, the following fundamental anti-commutation
relations hold:

{ai, aj} = 0 ; {a†i , a
†
j} = 0 ; {a†i , aj} = δij . (3.49)

For the kinetic energy commutators, we have:

[a†i , T ] =
∑
pq

tpq [a†i , a
†
paq] =

∑
pq

tpq
(
{a†i , a†p}aq − a†p{aq, a

†
i}
)

= −
∑
pq

tpq a
†
p δqi = −

∑
p

tpi a
†
p , (3.50)

and

[aj, T ] =
∑
pq

tpq[aj, a
†
paq] =

∑
pq

tpq
(
{aj, a†p}aq − a†p{aq, aj}

)
=
∑
pq

tpqaqδjp =
∑
p

tjpap . (3.51)
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Consequently, the kinetic energy contribution to the time derivative of the density
matrix will be:

(ρ̇ji)kin =
1

i~
∑
p

〈ψ|
{
− tpi a†p aj + tjp a

†
i ap
}
|ψ〉

=
1

i~
∑
p

(tjp ρpi − ρjp tpi) =
1

i~
〈j|
(
Tρ− ρT

)
|i〉 . (3.52)

For the commutators involving the potential energy, we need to evaluate the following
commutators:

[a†i , a
†
pa
†
rasaq] = {a†pa†ras, a

†
i}aq − a†pa†ras{aq, a

†
i}

= a†pa
†
r{as, a

†
i}aq − [a†pa

†
r, a
†
i ] as, aq − a†pa†ras δqi

= a†pa
†
raq δsi − a†pa†ras δqi , (3.53)

and

[aj, a
†
pa
†
rasaq] = {a†pa†ras, aj}aq − a†pa†ras{aq, aj}

= a†pa
†
r{as, aj}aq − [a†pa

†
r, aj]asaq

= −a†p{a†r, aj}asaq + {a†p, aj}a†rasaq
= a†pasaq δpj − a†pasaq δrj . (3.54)

Consequently, the potential energy contribution to the time variation of the density
matrix can be written:

(ρ̇ji)pot =
1

i~
〈ψ|1

2

∑
prqs

vprqs
[
(a†pa

†
raq δsi − a†pa†ras δqi)aj

+ a†i (a
†
rasaq δpj − a†pasaq δrj)

]
ψ〉

=
1

2i~
〈ψ|
∑
prq

vprqia
†
pa
†
raqaj −

∑
prs

vprisa
†
pa
†
rasaj

+
∑
rqs

vjrqsa
†
ia
†
rasaq −

∑
pqs

vpjqsa
†
ia
†
pasaq|ψ〉

=
1

2i~
〈ψ|
∑
prq

(vprqi − vpriq)a†pa†raqaj +
∑
rqs

(vjrqs − vrjqs)a†ia†rasaq|ψ〉

=
1

2i~
(∑
prq

(vprqi − vpriq)〈ψ|a†pa†raqaj|ψ〉+
∑
rqs

(vjrqs − vrjqs)〈ψ|a†ia†rasaq|ψ〉
)
.

(3.55)

We shall now proof that for any Slater determinant, |ψ〉 = b†1...b
†
i ...b

†
N |0〉, where bi are

associated with any single-particle complete basis, the following relation holds:

〈ψ|a†pa†raqas|ψ〉 = ρqrρsp − ρsrρqp . (3.56)
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We observe that the creation and annihilation operators, a, can be related to the
operators, b, trough a unitary transformation:

a†p =
∑
l

u∗pl b
†
l ; aq =

∑
l

uql bl . (3.57)

Consequently, one can write:

〈ψ|a†p a†r aq as|ψ〉 =
∑
lm

u∗pl u
∗
rm uql usm 〈ψ|b

†
l b
†
m bl bm|ψ〉

+
∑
lm

u∗pl u
∗
rm uqm usl 〈ψ|b

†
l b
†
m bm bl|ψ〉 . (3.58)

A rearrangement of the creation and annihilation operators leads to:

〈ψ|b†l b
†
m bl bm|ψ〉 = 〈ψ|b†l ( δlm − bl b

†
m)bm|ψ〉 = 〈ψ| δlmb†l bm|ψ〉 − 〈ψ|b

†
l bl b

†
m bm|ψ〉 , (3.59)

and
〈ψ| b†l b

†
m bm bl |ψ〉 = −〈ψ| b†l b

†
m bl bm |ψ〉 . (3.60)

Eventually, the substitution of Eqs. (3.59) and (3.60) into Eq. (3.58), and keeping in
mind that |ψ〉 is a Slater determinant, leads to:

〈ψ|a†pa†raqas|ψ〉 = −
∑
lm

u∗plu
∗
rmuqlusm〈ψ|b

†
l bl|ψ〉〈ψ|b

†
mbm|ψ〉

+
∑
lm

u∗plu
∗
rmuqmusl〈ψ|b

†
l bl|ψ〉〈ψ|b

†
mbm|ψ〉

= −〈ψ|
∑
l

u∗plb
†
l

∑
l

uqlbl|ψ〉〈ψ|
∑
m

u∗rmb
†
m

∑
m

usmbm|ψ〉

+ 〈ψ|
∑
l

u∗plb
†
l

∑
l

uslbl|ψ〉〈ψ|
∑
m

u∗rmb
†
m

∑
m

uqmbm|ψ〉

= −〈ψ|a†paq|ψ〉〈ψ|a†ras|ψ〉+ 〈ψ|a†pas|ψ〉〈ψ|a†raq|ψ〉
= ρqrρsp − ρsrρqp . (3.61)

Based on the previous result, one can further write the potential energy contribution
as:

(ρ̇ji)pot =
1

2i~

{∑
prq

(vprqi − vpriq)(ρqrρjp − ρjrρqp) +
∑
rqs

(vjrqs − vrjqs)(ρsrρqi − ρqrρsi)
}
.

(3.62)
If we now introduce the self-consistent Hartree-Fock potential [50, 71]:

〈p|U |q〉 =
∑
rs

(vprqs − vrpqs)ρsr , (3.63)

we obtain:

(ρ̇ji)pot =
1

2i~

{∑
q

〈j|U |q〉 ρqi +
∑
s

〈j|U |s〉 ρsi −
∑
p

〈p|U |i〉 ρjp −
∑
r

〈r|U |i〉 ρjr
}

=
1

i~
∑
α

{
〈j|U |α〉 ραi − ρjα〈α|U |i〉

}
. (3.64)
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We sum up the kinetic and potential contributions:

(ρ̇ji)kin =
1

i~
∑
α

(
〈j|T |α〉 ραi − ρjα 〈α|T |i〉

)
, (3.65)

(ρ̇ji)pot =
1

i~
∑
α

(
〈j|U |α〉 ραi − ρjα 〈α|U |i〉

)
, (3.66)

and thus, we arrive to the time-dependent Hartree-Fock equation for the density matrix:

(ρ̇ji)total =
1

i~
∑
α

(
〈j|T + U |α〉 ραi − ρjα 〈α|T + U |i〉

)
=

1

i~
〈j|
(
Hρ− ρH

)
|i〉 . (3.67)

For example, if we consider the density matrix elements in the position representation:

ρrr′ =
∑
α

ψα(r) ψ∗α(r′) , (3.68)

with |α〉 denoting any complete single-particle basis, and the time derivative of the density
matrix written as:

ρ̇rr′ =
∑
α

{∂ψα(r)

∂t
ψ∗α(r′) + ψα(r)

∂ψ∗α(r′)

∂t

}
, (3.69)

the TDHF equations in the position representation (see Eq.(3.67)) can be written as:

ρ̇rr′ =
1

i~

∫
d3r′′

(
〈r|H|r′′〉 ρr′′r′ − ρrr′′ 〈r′′|H|r′〉

)
=

1

i~
∑
α

∫
d3r′′

(
〈r|H|r′′〉ψα(r′′)ψ∗α(r′)− ψα(r)ψ∗α(r′′) 〈r′′|H|r′〉

)
. (3.70)

From Eqs. (3.69) and (3.70), taking into account that the Hamiltonian, H, is hermi-
tian, we conclude that:

∂ψα(r)

∂t
=

1

i~

∫
d3r′ 〈r|H|r′〉ψα(r′) . (3.71)

To arrive at the Vlasov equation we have to consider the Wigner transform of the
density matrix. Working with the density matrix in the position representation, ρr′r′′ ,
this is defined as a kind of Fourier transform:

f(r,p) ≡ 1

(2π~)3
ρWigner(r,p) =

1

(2π~)3

∫
d3s e−

i
~p·s ρr+s/2,r−s/2 , (3.72)

with respect to the relative distance r′ − r′′. We chose the notation f(r,p) to stress
the analogy with the classical one-body phase-space distribution function. Indeed, if
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one integrates the distribution function f(r,p) over momentum space one gets the local
density: ∫

d3p f(r,p) =
1

(2π~)3

∫∫
d3p d3s e−

i
~p·s ρr+s/2,r−s/2

=
1

(2π~)3

∫
d3s ρr+s/2,r−s/2

∫
d3p e−

i
~p·s

=

∫
d3s ρr+s/2,r−s/2 δ(−s) = ρrr = ρ(r) . (3.73)

Concerning the normalization factor, this definition for f(r,p) is also preferred by
Bertsch and Das Gupta [71] and Brink and Di Toro [72]. Other authors (see for example
the work of Kolomietz and Shlomo [73]) define the function f(r,p) to be just the Wigner

transform (i.e. f(r,p) = ρWigner(r,p)). In this case the constant
1

(2π~)3
appears when

an integration over momentum space occurs.
We mention that the distribution function can be expressed also as a Fourier transform

with respect to the relative momenta, when one works with a momentum representation
of the density matrix, ρp′p′′ :

ρp′p′′ = 〈ψ| a†p′′ ap′ |ψ〉 . (3.74)

Indeed, one can expand the creation and annihilation operators, a†r, ar, in terms of
any complete basis:

a†r =
∑
i

〈r|i〉∗ a†i =
∑
i

〈i|r〉 a†i . (3.75)

One can thus write: ∫
d3r 〈r|j〉 a†r =

∑
i

∫
d3r 〈i|r〉 〈r|j〉 a†i = a†j . (3.76)

Considering now a†j to be related to the momentum basis, we can express the creation
and annihilation operators:

a†p =

∫
d3r 〈r|p〉 a†r =

1

(2π~)3/2

∫
d3r e

i
~p·r a†r , (3.77)

ap =

∫
d3r 〈p|r〉 ar =

1

(2π~)3/2

∫
d3r e−

i
~p·r ar . (3.78)

If we assume that:

f(r,p) =
1

(2π~)3

∫
d3q e

i
~q·r ρp+q/2,p−q/2 , (3.79)

and, in this equation we insert the creation and annihilation operators, Eqs. (3.77)
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and (3.78), we obtain:

f(r,p) =
1

(2π~)6

∫
d3q e

i
~q·r 〈ψ|

∫∫
d3r1 d3r2 e−

i
~ (p+

q
2
)r1 e

i
~ (p−

q
2
)r2 a†r2 ar1 |ψ〉

=
1

(2π~)6

∫
d3q e

i
~q·r

∫∫
d3r1 d3r2 e−

i
~ (p+

q
2
)r1 e

i
~ (p−

q
2
)r2 ρr1,r2

=
1

(2π~)6

∫
d3q e

i
~q(r−

r1+r2
2

)

∫∫
d3r1 d3r2 e−

i
~p(r1−r2) ρr1,r2

=
1

(2π~)3

∫∫
d3r1 d3r2 δ

(
r− r1 + r2

2

)
e−

i
~p(r1−r2) ρr1,r2 . (3.80)

Making the following substitution:

s = r1 − r2 , r =
r1 + r2

2
, (3.81)

one has:
f(r,p) =

1

(2π~)3

∫
d3s e−

i
~p·s ρr+s/2,r−s/2 , (3.82)

which is exactly the definition for the distribution function in terms of the density matrix
in the position representation, therefore making our initial assumption valid. This new
form of the distribution function, helps us to show that, when integrated over coordinate
space: ∫

d3r f(r,p) =
1

(2π~)3

∫∫
d3p d3q e

i
~q·r ρp+q/2,p−q/2

=
1

(2π~)3

∫
d3q ρp+q/2,p−q/2

∫
d3r e

i
~q·r

=

∫
d3q ρp+q/2,p−q/2 δ(q) = ρpp = ρ(p) , (3.83)

the local density in momentum space is obtained.
Now, we are in the position to derive the Vlasov equation. Using the TDHF equa-

tions (Eqs. (3.67)) as well as the two definitions for the Wigner transforms of the density
matrices (Eqs. (3.72) and (3.79)) one can express the time derivative of the distribu-
tion function as a sum two terms: one kinetic, in which we will use the momentum
representation for f(r,p), and with |α〉 representing momentum states:(∂f(r,p)

∂t

)
kin

=
1

(2π~)3

∫
d3q e

i
~q·r ρ̇p+q/2,p−q/2

=
1

(2π~)3

∫
d3q e

i
~q·r

1

i~

∫
d3α

(
〈p +

q

2
|T |α〉ρα,p−q

2
− ρp+q

2
,α〈α|T |p−

q

2
〉
)
,

(3.84)

and one potential, where the position representation will be used, and with |α〉 rep-
resenting position states:(∂f(r,p)

∂t

)
pot

=
1

(2π~)3

∫
d3s e−

i
~p·s ρ̇r+s/2,r−s/2

=
1

(2π~)3

∫
d3q e−

i
~p·s

1

i~

∫
d3α

(
〈r +

s

2
|U |α〉 ρα,r− s

2
− ρr+ s

2
,α 〈α|U |r−

s

2
〉
)
.

(3.85)
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The kinetic term can be evaluated as follows:(∂f(r,p)

∂t

)
kin

=
1

(2π~)3
1

i~

∫∫
d3q d3α e

i
~q·r
{ α2

2m
δ
(
α− (p +

q

2
)
)
ρα,p−q

2

−
(p− q

2
)2

2m
ρp−q

2
,α δ
(
α− (p− q

2
)
)}

=
1

(2π~)3
1

i~

∫
d3q e

i
~q·r ρp+q

2
,p−q

2

[(p + q
2
)2

2m
−

(p− q
2
)2

2m

]
=

1

(2π~)3
1

i~

∫
d3q e

i
~q·r

p · q
m

ρp+q
2
,p−q

2
= − p

m
· ∇r f(r,p) . (3.86)

To evaluate the potential term we first consider the mean field potential to be local
(i.e. 〈r|U |r′〉 = U(r)δ(r− r′)):(∂f(r,p)

∂t

)
pot

=
1

(2π~)3
1

i~

∫∫
d3s d3α e−

i
~p·s

{
U
(
r +

s

2

)
δ
(
r +

s

2
−α

)
ρα,r− s

2

− ρr+ s
2
,α U(α) δ

(
α− (r− s

2
)
)}

=
1

(2π~)3
1

i~

∫∫
d3s e−

i
~p·s
[
U(r +

s

2
)− U(r− s

2
)
]
ρr+ s

2
,r− s

2
. (3.87)

It is worth noting that the above equations retain the full quantum mechanical picture.
If we expand to the lowest order

U(r + s
2
)− U(r− s

2
) = U(r) + (r + s

2
− r) · ∇rU(r) + . . .

− U(r)− (r− s
2
− r) · ∇rU(r)− . . .

≈ s · ∇rU(r) ,

the previous statement will not hold anymore, and we get:(∂f(r,p)

∂t

)
pot

=
1

(2π~)3
1

i~

∫∫
d3s e−

i
~p·s

(
s · ∇rU(r)

)
ρr+ s

2
,r− s

2

= ∇rU(r) · ∇pf(r,p) . (3.88)

Summing up these the kinetic and potential contributions:

∂f(r,p)

∂t
=
(∂f(r,p)

∂t

)
kin

+
(∂f(r,p)

∂t

)
pot

= − p

m
· ∇rf(r,p) +∇rU(r) · ∇pf(r,p) , (3.89)

we obtain the Vlasov equation:

∂f(r,p)

∂t
+

p

m
· ∇rf(r,p)−∇rU(r) · ∇pf(r,p) = 0 . (3.90)

One should note that Eq. (3.90) is obtained within the lowest order, and if one would
include in the expansion of the local potential, U(r ± s

2
) all higher order terms (see Eq.

(3.88)), one would arrive to the TDHF limit. As previously noted, f(r,p) can be viewed
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as the quantum mechanical analogue to the classical phase-space distribution function. In
the semi-classical limit given by the Vlasov equation, the quantum effects enter through
the Pauli correlations contained into the distribution function, included already from
the initial conditions, which should characterise the initial distribution of the quantum
system. Moreover, as a transport equation, the Vlasov equation, verifies the Liouville
theorem (i.e. the volume in phase-space is conserved), so, at any later time, the Pauli
principle will hold. We also mention that into the transport equations, the first quantum
effects can be included as additional terms which contain second order powers of Plank
constant, and depend on third order derivatives.

3.2.1 Isoscalar response

In the following example, we employ the Vlasov equation to illustrate the isoscalar re-
sponse in nuclear matter, within a microscopic model based on one component. We shall
consider small deviations from the equilibrium distribution function:

f(r,p, t) = f 0(E) + δf(r,p, t) , (3.91)

with
f 0(E) =

γ

(2π~)3
Θ(E − EF ) , (3.92)

the equilibrium Fermi-Dirac distribution function at zero temperature. γ is the degen-
eracy factor, equal to two, accounting for spin up and spin down nucleons. The local
variation of the density can be expressed in terms of the small deviation of the distribu-
tion function from the equilibrium, δf :

δρ(r) =

∫
d3p δf(r,p, t) . (3.93)

The linearized Vlasov equation (3.90) becomes:

∂ δf

∂t
+

p

m
· ∇rδf −∇rδU(ρ(r)) · ∇pf

0 = 0 , (3.94)

with the potential variation satisfying δU(ρ(r)) =
∂U

∂ρ
δρ, and thus:

∇rδU(ρ(r)) =
∂U

∂ρ
∇rδρ . (3.95)

We search for a plane-wave solution to Eq. (3.94) of the following form:

δf(r,p, t) =
γ

(2π~)3

∑
k

Ak(p) e i(kr−ωt) . (3.96)

Consequently, for the variation of the distribution function we have:

∂ δf

∂t
=

γ

(2π~)3

∑
k

(−iω) Ak(p) e i(kr−ωt) , (3.97)

∇rδf =
γ

(2π~)3

∑
k

(ik) Ak(p) e i(kr−ωt) . (3.98)
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With the help of Eq. (3.93), one can write:

∇rδρ = ∇r

∫
γ

(2π~)3

∑
k

Ak(p) e i(kr−ωt) d3p

=
∑
k

(ik)
[ γ

(2π~)3

∫
Ak(p) d3p

]
e i(kr−ωt)

=
∑
k

(ik) ρk e i(kr−ωt) , (3.99)

with
ρk =

γ

(2π~)3

∫
Ak(p) d3p , (3.100)

and
δρ(r) =

∑
k

ρk e i(kr−ωt) . (3.101)

Consequently, for the last term of Eq. (3.94) we have:

∇rδU · ∇pf
0 = ∇r

(∂U
∂ρ

δρ
)
· ∇pf

0 =
∂U

∂ρ
∇rδρ · ∇pf

0

=
∂U

∂ρ
(ik)

∑
k

ρk e i(kr−ωt) · γ

(2π~)3
(
− p

m
δ(E − EF )

)
,

(3.102)

and thus, the Vlasov equation becomes:

γ

(2π~)3

∑
k

(
(−iω)Ak(p) + ik · p

m
Ak(p) +

∂U

∂ρ
(ik) · p

m
ρk δ(E − EF )

)
e i(kr−ωt) = 0 .

(3.103)
For the above equation to be true, we should have:

Ak(p)
(k · p
m
− ω

)
+

k · p
m

∂U

∂ρ
ρk δ(E − EF ) = 0 , (3.104)

or, equivalently:

Ak(p) +
∂U

∂ρ
ρk δ(E − EF )

k · p/m
k · p/m− ω

= 0 . (3.105)

The above equation represents an homogeneous system of equations for the Ak(p)
amplitudes. From the condition to have non-trivial solutions, the dispersion relation will

be derived. Indeed, if we integrate over momentum space and consider
k · p
m

=
k p cos θ

m
with θ = (k̂,p), we obtain:∫

d3p
γ

(2π~)3
Ak(p) +

∂U

∂ρ
ρk

∫
d3p

γ

(2π~)3
δ(E − EF )

k · p/m
k · p/m− ω

= 0 , (3.106)
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or, equivalently:

ρk

(
1 +

∂U

∂ρ

γ

(2π~)3

∫∫∫
k p cos θ/m

k p cos θ/m− ω
δ(E − EF ) p2 sin θ dp dθ dφ

)
= 0 . (3.107)

One can express the delta-Dirac function in terms of absolute values of the momenta:

δ(E − EF ) = δ
( p2

2m
− p2F

2m

)
= 2mδ(p2 − p2F ) = 2m

1

2 pF

[
δ(p+ pF ) + δ(p− pF )

]
=
m

pF
δ(p− pF ) , (3.108)

since there are no negative absolute momenta, and the first delta function cancels. The
integral in Eq. (3.107), over momenta, becomes:∫

k p cos θ/m

k p cos θ/m− ω
δ(E − EF ) p2 dp =

∫
cos θ

cos θ − ω
m

k p

m

pF
δ(p− pF ) p2 dp

=
cos θ

cos θ − ω
m

k pF

mpF

=
cos θ

cos θ −
ω

k vF

mpF =
cos θ

cos θ − s
mpF , (3.109)

with s =
ω

kvF
. Now, we shall solve the integral over the polar angle θ:∫ π

0

− cos θ

cos θ − s
d(cos θ) =

∫ −1
1

−x
x− s

dx =

∫ 1

−1

x− s+ s

x− s
dx = 2 + s

∫ 1

−1

1

x− s
dx

= 2− s ln
s+ 1

s− 1
= 2
(

1− s

2
ln
s+ 1

s− 1

)
, (3.110)

Considering now Eqs. (3.109) and (3.110), Eq. (3.107) requires:

1 +
∂U

∂ρ

γ

(2π~)3
2
(

1− s

2
ln
s+ 1

s− 1

)
mpF 2π = 0 . (3.111)

This equation can also be written in the following form:
s

2
ln
s+ 1

s− 1
= 1 +

1

F 0
. (3.112)

The solution of this equation gives the collective mode velocity in terms of Fermi
velocity units. This collective mode named zero-sound is a pure quantum mode which
depends on the interaction through the the Landau parameter, F 0, representing the

product between
∂U

∂ρ
and the single-particle density of states at Fermi level, N(0):

N(0) =

∫
d3p

γ

(2π~)3
δ(E − EF ) =

γ

(2π~)3

∫
dp dΩ p2

m

pF
δ(p− pF )

=
γ

(2π~)3
4πmpF =

γ mpF
2π2~3

. (3.113)
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We remark that this mode propagates even at zero temperature and in the absence
of any particle collisions, being therefore completely different from the hydrodynamical
sound-wave, which requires the local equilibrium. This can only be established trough
two-body collisions, which, at zero temperature, are inhibited due to Pauli blocking.
The mode manifests as a periodic egg-like shape oscillations in momentum space and at
zero-temperature involves only particles only at the Fermi surface.

3.2.2 Isovectorial response

Using a similar procedure, we can obtain an isovector zero-sound mode in symmetric
nuclear matter, based on a set of two coupled Vlasov equations for both protons and
neutrons:

∂fp
∂t

+
p

m
· ∇rfp −∇rUp · ∇pfp = 0 , (3.114a)

∂fn
∂t

+
p

m
· ∇rfn −∇rUn · ∇pfn = 0 . (3.114b)

We again consider small deviations of the distribution functions from equilibrium:

fp(r,p, t) = f 0
p (E) + δfp(r,p, t) , (3.115a)

fn(r,p, t) = f 0
n(E) + δfn(r,p, t) , (3.115b)

with f 0
p (E) = f 0

n(E) =
γ

(2π~)3
Θ(E−EF ) representing the statical Fermi-Dirac solutions

for protons and neutrons. Within the linear approximation, Eqs. (3.114) become:

∂ δfp
∂t

+
p

m
· ∇rδfp −∇rδUp · ∇pf

0
p = 0 , (3.116a)

∂ δfn
∂t

+
p

m
· ∇rδfn −∇rδUn · ∇pf

0
n = 0 . (3.116b)

Considering a Skyrme-like parametrization of the mean-field potentials for protons
and neutrons (see Eqs. (3.40) and (3.41) ):

δUp =
A

ρ0
(δρn + δρp) +

B

ρ0
(δρn + δρp)

σ +
C

ρ0
(δρp − δρn) , (3.117a)

δUn =
A

ρ0
(δρn + δρp) +

B

ρ0
(δρn + δρp)

σ +
C

ρ0
(δρn − δρp) , (3.117b)

with C taken to be density independent (i.e. as for the asy-stiff parametrisation). For
the isovector variation δf = δfp − δfn, one has:

∂ δf

∂t
+

p

m
· ∇rδf −∇r(δUp − δUn) ·

(
− p

m
δ(E − EF )

)
= 0 , (3.118)

where
(δUp − δUn) = 2

C

ρ0
(δρp − δρn) = 2

C

ρ0

∫
d3p γ δf . (3.119)
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Again, we search for a plane-wave solution:

δf(r,p, t) =
γ

(2π~)3

∑
k

Ak(p) e i(kr−ωt) , (3.120)

and, consequently, Eq. (3.118) becomes:

γ

(2π~)3

∑
k

[
(−iω)Ak(p)+ik· p

m
Ak(p)+2

C

ρ0
ik· p

m
ρk δ(E−EF )

]
e i(k·r−ωt) = 0 . (3.121)

This requires that the following equation should be satisfied:

Ak(p) + 2
∂C

ρ0
ρk δ(E − EF )

k · p/m
k · p/m− ω

= 0 . (3.122)

To obtain the dispersion relation we again integrate over momentum space:∫
d3p

γ

(2π~)3
Ak(p) + 2

C

ρ0

γ

(2π~)3
ρk

∫
d3p δ(E − EF )

k · p/m
k · p/m− ω

= 0 , (3.123)

which will lead us to:

1 + 2
C

ρ0

γ

(2π~)3
2
(

1− s

2
ln
s+ 1

s− 1

)
mpF 2π = 0 ,

C

ρ0

γ

(2π~)3
8π mpF

(s
2

ln
s+ 1

s− 1
− 1
)

= 1 . (3.124)

Since the equilibrium density, ρ0, can be expressed in terms of Fermi momentum :

ρ0 =

∫
d3p f 0(E) =

∫
d3p

(
f 0
p (E) + f 0

n(E)
)

=

∫
d3p

2γ

(2π~)3
Θ(E − EF ) =

2γ

(2π~)3

∫
p2 dp dΩ Θ(E − EF )

=
2γ

(2π~)3
4π

∫ EF

0

2mE
m√
2mE

dE =
2γ

(2π~)3
4π
√

2 m3/2 E
3/2
F

3/2

=
2γ

(2π~)3
4π

p3F
3
, (3.125)

we will have:
s

2
ln
s+ 1

s− 1
− 1 =

2EF
3C

. (3.126)

The isovector collective mode velocity will depend now on the symmetry energy
through the value of the parameter C. For C = 32 MeV, corresponding to an asy-
stiff parametrisation, the solution s =

ω

k vF
≈ 1.08 is obtained (see Fig. 3.5). Again, the

isovector zero sound mode is a quantum collective motion different from the hydrody-
namical (or first sound) mode, which is driven by the pressure gradient, and so, requiring
the local thermodynamical equilibrium. In finite nuclei, this zero sound mode will corre-
spond to the GDR. Considering a wave-number k, determined by the dimension of the
tin isotope 132Sn, the energy of the phonon would be ~ω ≈ 15.15 MeV, quite close to the
experimental results.
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Figure 3.5: Graphical representation for the zero sound solution in Eq. (3.126), s =
ω

k vF
≈ 1.08, with EF ≈ 36 MeV at saturation density ρ0 = 0.16 fm−3 (see Eq. (3.21) ),

and an asy-stiff parametrization for the symmetry term, C = 32 MeV.
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Chapter 4

Vlasov approach to dipole modes in
neutron rich nuclei

In the previous Chapter, we proved that the Vlasov equation:

∂f(r,p)

∂t
+

p

m
· ∇rf(r,p)−∇rU(r) · ∇pf(r,p) = 0 , (4.1)

represents the semi-classical limit of the TDHF equations. It describes the dynamical
evolution of the one-body distribution function, f(r,p, t), of a fermionic system, in the
presence of a self-consistent mean-field, U(r). When applied to nuclear matter, we showed
that it predicts the existence of a new class of collective motions, namely the zero-sound,
which can propagate even at zero-temperature. In this Chapter our goal is to extend the
application of this equation to finite fermionic systems, namely atomic nuclei.

Along the first section we describe the basic ingredients required to implement nu-
merically the Vlasov equation. Our approach will be based on the so-called test particle
method, which we will briefly describe in the following. Once the principles of this method
are presented, we shall expose the structure of the numerical program devoted to inte-
grate the transport equation. Then, we shall investigate various static properties of the
neutron rich tin isotope, 132Sn. We test the capability of the program to reproduce some
features of the neutron skin also in relation to the symmetry energy parametrization em-
ployed. Finally we explore the dipole response of various neutron rich nuclei, focusing on
the properties of the collective modes, pygmy, core, and GDR vibrations, suggested by
the HOSM in Chapter 2. We shall inquire in detail the dependence of these features on
the symmetry energy parametrization as well as on the nuclear mass.

4.1 The test particle method
The essential task of the transport approach is to provide the value of the one-body
distribution function at any time. Once this quantity is known, the expectation values of
any one-body observable, A(r,p), can be evaluated as an integral over phase-space. In
particular, the total number of nucleons, A, is:∫∫

d3r d3p f(r,p, t) = A . (4.2)
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The test particle method starts from the observation that the Gaussian functions
generate, as coherent states, a super-complete basis. Then, the following expansion for
the distribution function is valid:

f(r,p, t) =
1

(2π~)3

∫
d3r0 d3p0 ω(r0,p0, 0) g(r− r0,p− p0, t) ≡ ω(r,p, 0) g(r,p, t) ,

(4.3)
where g(r − r0,p − p0, t) corresponds to a product of Gaussian functions in coordinate
and momentum space, centered in r0 and p0 respectively, while ω(r0,p0, 0) represents
the corresponding weight in the expansion of g. In our numerical implementation, this
expansion is discretized into a sum over a sufficiently large number of Gaussian functions
[74, 75]:

f(r,p, t) =
1

N
1

(2π~)3
1

(4π2χφ)3/2

N∑
i

exp

(
− (r− ri(t))

2

2χ

)
exp

(
− (p− pi(t))

2

2φ

)
. (4.4)

Here, ri(t) and pi(t) represent the centroid positions in coordinate and momentum
space of the i-Gaussian function, which define an individual test particle, while N indi-
cates the number of test particles per nucleon. Consequently, the total number of test
particles used, will be N = A · N .

The Gaussian functions which appear in Eq. (4.4) are normalized as follows:

gχ(r− ri) =
1

(2πχ)3/2
exp

(
− (r− ri)

2

2χ

)
, (4.5a)

gφ(p− pi) =
1

(2πφ)3/2
exp

(
− (p− pi)

2

2φ

)
, (4.5b)

so that one has: ∫
d3r gχ(r− ri) = 1 , (4.6a)∫

d3p gφ(p− pi) = 1 . (4.6b)

Let us observe that the gradients of the distribution function, as well as the time
derivative can be expressed as follows:

∇rf(r,p, t) =
1

N
1

(2π~)3
1

(4π2χφ)3/2

×
N∑
i

[
− (r− ri)

χ

]
exp

(
− (r− ri)

2

2χ

)
exp

(
− (p− pi)

2

2φ

)
, (4.7a)

∇pf(r,p, t) =
1

N
1

(2π~)3
1

(4π2χφ)3/2

×
N∑
i

[
− (p− pi)

φ

]
exp

(
− (r− ri)

2

2χ

)
exp

(
− (p− pi)

2

2φ

)
, (4.7b)
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and

∂

∂t
f(r,p, t) =

1

N
1

(2π~)3
1

(4π2χφ)3/2

×
N∑
i

[
(r− ri)

χ

∂ri
∂t

exp

(
− (r− ri)

2

2χ

)
exp

(
− (p− pi)

2

2φ

)
+

(p− pi)

φ

∂pi
∂t

exp

(
− (r− ri)

2

2χ

)
exp

(
− (p− pi)

2

2φ

)]
. (4.8)

Substituting these expressions into the Vlasov equation (Eq. (3.90)), we find that the
centroids of each Gaussian, ri and pi must satisfy Hamilton equations, that is:

∂ri
∂t

=
pi
m
, (4.9a)

∂pi
∂t

= −∇riU(ri) . (4.9b)

One can observe that the local density obtained by integrating the distribution func-
tion over momenta, appears as a contribution from all the test particles:

ρ(r) =

∫
d3p f(r,p, t)

=
1

N
1

(2π~)3

N∑
i=1

gχ(r− ri(t))

∫
d3p gφ(p− pi(t))

=
1

N
1

(2π~)3

N∑
i=1

gχ(r− ri(t)) . (4.10)

More generally, the average value of an arbitrary physical quantity, A(r,p), can be
expressed:

〈A(r,p)〉 =

∫
d3r d3p A(r,p)f(r,p, t)

=
1

N
1

(2π~)3

N∑
i

∫
d3r d3p A(r,p) gχ(r− ri) gφ(p− pi)

=
1

N
1

(2π~)3

N∑
i

〈A(r,p)〉i , (4.11)

where 〈A(r,p)〉i represents the contribution of an individual Gaussian. This contribution
is obtained by the convolution of A with the corresponding Gaussians in coordinate and
momentum space:

〈A(r,p)〉i =

∫
d3r d3p A(r,p) gχ(r− ri(t)) gφ(p− pi(t)) . (4.12)
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Consequently, for the average density, 〈ρ〉, we get:

〈ρ〉 =

∫
d3r d3p ρ(r) f(r,p, t) =

1

N
1

(2π~)3

N∑
i

〈ρ(r)〉i

=
1

N 2

1

(2π~)6

N∑
i,j

g2χ(ri − rj) , (4.13)

since,

〈ρ(r)〉i =

∫
d3r d3p ρ(r) gχ(r− ri) gφ(p− pi)

=

∫
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1

N
1

(2π~)3
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1

(2πχ)3
√
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1
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1
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exp
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4χ

)

=
1

N
1

(2π~)3

N∑
j

g2χ(ri − rj) . (4.14)

Into the calculations we also need to evaluate 〈ργ(r)〉i, for which we shall make the
following approximation:

〈ργ(r)〉i ≈ 〈ρ(r)〉γi . (4.15)

Solving the Hamilton equations will require also the gradients of the average value of
the density carried by a Gaussian i:

∂

∂xi
〈ρ(r)〉i =

1

N
1

(2π~)3

N∑
j

∂

∂xi
g2χ(ri − rj)

=
1

N
1

(2π~)3
1

(4πχ)3/2

N∑
j

∂

∂xi
exp

(
− (ri − rj)

2

4χ

)

=
1

N
1

(2π~)3
1

(4πχ)3/2

N∑
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xj − xi
2χ

exp

(
− (ri − rj)

2

4χ

)
. (4.16)
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For
∂

∂xi
〈ργ(r)〉i we also make the approximation:

∂

∂xi
〈ργ(r)〉i ≈

∂

∂xi
〈ρ(r)〉γi = γ 〈ργ(r)〉γ−1i

∂

∂xi
〈ρ(r)〉i . (4.17)

Consequently, for the isoscalar part of the mean field:

U(ρ) = A
ρ

ρ0
+B

ρ

ρ0

γ

≡ t0 ρ+ t3 ρ
γ , (4.18)

the convolution over Gaussian i can be expressed:

〈U(ρ)〉i = t0 〈ρ(r)〉i + t3 〈ρ(r)〉γi , (4.19)

while the derivative with respect to coordinate xi is:

∂

∂xi
〈U(ρ)〉i = t0

∂

∂xi
〈ρ(r)〉i + t3

∂

∂xi
〈ρ(r)〉γi . (4.20)

The numerical integration of the Hamilton equations is achieved employing a second
order Runge-Kutta algorithm [76], which is briefly discussed in the following.

We start from a first order differential equation, satisfied by the function y(x):

dy

dx
= f

(
x, y(x)

)
. (4.21)

We are interested in the solution of the above equation, knowing the initial condition
(i.e. y0 = y(x = 0)), at a particular value of x, let us say x = 1. The idea now is to
divide the interval [0, 1] into equally spaced subintervals with the length h = 1/N with
the number of intervals, N , eing sufficiently large. The next step is to develop a recursion
formula which will relate yn (with yn = y(xn = nh)) to ym, withm = n−1, n−2, n−3, . . ..
An exact recursion formula can be achieved by integrating Eq. (4.21), so that:

yn+1 − yn =

∫ xn+1

xn

dx f(x, y) . (4.22)

The second order Runge-Kutta algorithm is obtained by approximating f(x, y) in the
above integral by a Taylor expansion about the mid-point of the integration interval:

f(x, y) = f(xn+1/2, yn+1/2) + (x− xn+1/2)
df

dx

∣∣∣∣
x=(n+1/2)h

. (4.23)

From Eqs. (4.21), (4.22) and (4.23) we get:

yn+1 − yn =

∫ xn+1

xn

dx
(
f(xn+1/2, yn+1/2) + (x− xn+1/2) yn+1/2

)
= hf(xn+1/2, yn+1/2) +

x2n+1 − x2n
2

yn+1/2 − (xn+1 − xn)xn+1/2 yn+1/2

= hf(xn+1/2, yn+1/2) +
(xn+1 − xn)(xn+1 + xn)

2
yn+1/2 − hxn+1/2 yn+1/2

= hf(xn+1/2, yn+1/2) + h
(xn+1 + xn)

2
yn+1/2 − hxn+1/2yn+1/2

= hf(xn+1/2, yn+1/2) , (4.24)
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so
yn+1 = yn + hf(xn+1/2, yn+1/2) +O(h3) , (4.25)

which is just the second order Runge-Kutta approximation. Thus, the propagation of the
test particles in Eq. (4.9) will be expressed as follows (with h = δt and xn = t):

pi(t+ δt) = pi(t)− δt ∇U(ri, t+ δt/2) , (4.26)
ri(t+ δt/2)) = ri(t− δt/2) + δt pi(t)/m . (4.27)

Solving these equations we reconstruct the distribution function at any instant in
terms of the Gaussian functions.

Now we are in the position to describe the structure of the numerical code devoted to
solve the two coupled Vlasov equations for protons and neutrons. Essentially, the program
has three main parts, and an overview is presented in Fig. (4.1). In the first part, the
ground-state for the system is constructed. In the second part, the time integration is
implemented. The third part of the program, at specified time intervals, extracts physical
information of interest which characterise various properties of the system.

For the initialization, the program reads from the input file, the number of neutrons
and protons, the widths of Gaussian functions in coordinate and momentum space, χ
and φ, the number of test particles per nucleon, N , the integration time step, the total
evolution time, the time interval at which the subroutine CLUSTER is called, the EOS
choice in isoscalar and isovector channels. In the isovector sector we consider asy-stiff
parametrisation isy=1, asy-soft parametrisation isy=2, and asy-superstiff parametrisa-
tion isy=3. We performed several trial runs with various number of test particles per
nucleon, to observe the stability of the calculations. To achieve a good spanning of the
phase-space we decided to work mainly with N = 1200 test particles per nucleon, which
represents a balanced compromise between accuracy and computation speed. The in-
tegration time step is 0.5 fm/c, and the analysis time interval is 1 fm/c. The system
evolution if followed for at least 630 fm/c.

The nucleus ground state preparation is performed within a subroutine named GROUND,
following the steps described below [77]. Within a volume in phase-space, V0ps = V0(r) ·
V0(p), obtained from a sphere in coordinate space of radius 1.5A1/3 fm and a sphere
in momentum space of radius 1.45 ~ MeV/c (with ~ = 197.33 MeV · fm/c), a number,

Ntot = 4
V0ps

(2π~)3
N of Gaussian functions equal to the total number of states, is randomly

generated. Starting from some initial guess for the values of Fermi energies of protons
and neutrons, a linear interpolation of Fermi levels is obtained. After that, the energies
of all the nucleons are situated below the final Fermi levels. Once the new Fermi levels
are obtained, a new random generation of test particles is performed until a number of
proton Gaussians, N · Z with energy less than proton Fermi level, and a number of neu-
tron Gaussians, N ·N with energy less than neutron Fermi level are obtained. With this
initial positions of the Gaussians in coordinate and momentum space, one can construct
the initial distribution functions, f(r,p, t = 0) (see Eq. (4.4)) for protons and neutrons.

The second part of the program, the subroutine PROPAG, acomplishes the time evolu-
tion of the system, integrating the Vlasov equation which, in agreement with our previous
discussions, is reduced to the integration of the Hamilton equations for the centroids of
the Gaussians entering into the definition of the distribution functions (see Eq. (4.9))
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Figure 4.1: Schematic overview of the program structure.

for protons and neutrons. Using the Runge-Kutta method the integration of Hamilton
equations is accomplished evaluating at each time step the contributions to the gradient
of the nuclear mean field and Coulomb interactions among protons. Once the new po-
sitions of Gaussians are known the new distribution functions are reconstructed. Then,
the physical properties of interest (dipole moments, quadrupole moments, local densities
in the real and momentum space, energies) are calculated into the subroutine named
CLUSTER, based on relations as those introduced in the beginning of the Section.

4.2 Static properties within Vlasov dynamics
We shall first investigate the ground state properties of the neutron-rich nucleus 132Sn.
The ground state configuration is obtained as the stationary solution of the Vlasov equa-
tions for protons and neutrons. Since we neglect the two-body collision effects, the main
ingredient would be the nuclear mean field. We shall employ a Skyrme-like parametriza-
tion for the nuclear mean field (see. Eqs. (3.40), (3.41) and (3.43)), as well as the Coulomb
interaction potential between the protons. The values of the coefficients A = −356.8 MeV,
B = 303.9 MeV, σ = 7/6, lead to the following properties of symmetric nuclear matter:
the saturation density ρ0 = 0.16 fm−3, the binding energy EB = −16 MeV/nucleon, and
the compressibility modulus of "soft EOS" type, K = 201 MeV. The effective nucleon
mass is taken equal to the bare mass, 940 MeV. For the isovector channel we employ
three different parametrizations, namely asy-soft, asy-stiff and asy-superstiff, which we
previously discussed.

The system is left to freely evolve in the absence of any external perturbation. The
equilibrium distribution functions of the Vlasov equations are obtained. Then, one can
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evaluate the local proton and neutron densities:

ρp(r, t) =

∫
d3p fp(r,p, t) , (4.28)

ρn(r, t) =

∫
d3p fn(r,p, t) , (4.29)

as well as the proton and neutron mean square radii:

〈r2p〉 =
1

Np

∫
d3r r2 ρp(r, t) , (4.30)

〈r2n〉 =
1

Nn

∫
d3r r2 ρn(r, t) . (4.31)

Then one can calculate the neutron skin thickness defined as:

∆Rnp = Rn −Rp =
√
〈r2n〉 −

√
〈r2p〉 . (4.32)

In Table. 4.1 we report the values of the protons and neutrons rms radii, as well as
the skin thickness, for the three different parametrizations of C(ρ). The values of the
symmetry energy per nucleon at saturation:

Esym
A

(ρ0) =
1

3
εF (ρ) +

C(ρ)

2

ρ

ρ0

∣∣∣∣
ρ=ρ0

, (4.33)

as well as the slope parameter:

L = 3 ρ0
dEsym/A

dρ

∣∣∣∣
ρ=ρ0

, (4.34)

are also reported in Table. 4.1 for the three asy-EOS. One can see that the neutron skin
thickness increases with the slope parameter, an effect linked to the symmetry pressure.
This is consistent with the findings of Yoshida and Sagawa [12]. Moreover, the values
obtained with our semi-classical approach for the protons and neutrons rms radii as well as
the skin thickness, are in reasonable agreement with the ones obtained in the framework
of relativistic mean field or Skyrme Hartree-Fock theories [78]. A good agreement is also
remarked when our findings are compared with the results obtained with similar effective
interactions, within various theoretical models [79]. The radial extensions as well as the
radial density profiles (see Fig. 4.2) for protons and neutrons, are quite consistent with
those obtained using other theoretical methods [78, 30]. Nevertheless, while in our semi-
classical calculations, a constant density profile is predicted in the internal region below
4 fm, in more sophisticated quantum approaches, such as Hartree-Fock-Bogolyubov [30],
some oscillations of proton and neutron densities show up. However, our semi-classical
approach is able to disentangle the symmetry energy effects in the nuclear ground state,
consistent with the predictions of more elaborate approaches.

The stability of the ground state was also checked, and, as can be seen from Fig.
4.2 the system manifests very small amplitude fluctuations around the average values
of neutron and proton rms radii. Moreover, the number of test particles escaping from

50



Figure 4.2: Graphical representation of the radial density profiles for the neutrons (blue
lines in the middle), protons (lower red lines) and total (upper black lines) for asy-soft
(solid lines) and asy-superstiff (dashed lines) parametrisations of the EOS.

Figure 4.3: Time evolution of proton (dashed lines) and neutron (solid lines) radii for
asy-soft (blue) and asy-superstiff (red) parametrisations of the EOS, in the ground state.

asy-EOS Esym/A (MeV) L(MeV) Rn(fm) Rp(fm) ∆Rnp(fm)

asy-soft 29.9 14.4 4.90 4.65 0.25
asy-stiff 28.3 72.6 4.95 4.65 0.30
asy-superstiff 28.3 96.6 4.96 4.65 0.31

Table 4.1: The dependence on the equation of state (EOS) for the symmetry energy at
saturation, the slope parameter, neutrons rms radius, protons rms radius and neutron
skin thickness.
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Figure 4.4: Time evolution of the mass number, A, for the ground state (solid lines)
and for an evolution of the 132Sn nucleus after a "pygmy-like" excitation (dotted lines),
for asy-soft (blue) and asy-superstiff (red) parametrisations of the EOS.

the system within 300 fm/c is less then 0.2 nucleons (see Fig. 4.2), while the energy
conservation is satisfied within a limit less than 1%.

Summarizing the main findings of these Section, we conclude that our semi-classical
approach provides quite reasonable description of the ground state, in agreement with
other many-body approaches, and in the range inferred by experimental observations.
Moreover, the sensitivity of the neutron skin to the symmetry-energy, also predicted by
other works, motivate us to extend our investigation to the dipole response in neutron
rich nuclei.

4.3 Pygmy and Giant dipole modes in exotic nuclei
Inspired by the main conclusions of the HOSM, in this Section we explore both the
oscillations of the nuclear skin against the core, associated to the pygmy mode, and the
out of phase oscillations of all protons against all neutrons, associated to the GDR mode.

To inquire on the collective properties of the pygmy dipole mode, after t = t0 =
30 fm/c from the initialisation, we excite the system by boosting along z direction all the
excess neutrons, and in opposite direction all the core nucleons in such a way that the
center of mass of the nucleus remains at rest. We shall call this a "pygmy-like" excitation.
The excess neutrons, Ne = 32, for the case of 132Sn isotope, are identified as the most
distant neutrons from the center of mass. Later on, we shall consider a different initial
excitation, where all the neutrons are boosted along z direction, and in opposite direction
all the protons, in such a way that the center of mass remains at rest. We shall call this
a "GDR-like" excitation.

We mention that, in order to check the stability of our numerical procedure during
the time evolution, we analyze the number of test particles escaping from the system.
On average this number corresponds to less than a neutron(see also Fig. 4.2), while, the
total energy conservation is satisfied within 1.5%.
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Figure 4.5: Graphical representation of the time evolution of the total dipole D (a),
pygmy dipole Dy (b), and of core dipole Dc (c), for asy-soft (solid blue lines) and asy-
superstiff (dashed red lines) EOS, for a "pygmy-like" initial excitation with Ne = 32
excess neutrons considered in the excitation.

In all cases, after the initial boost, the system is left to evolve for at least 600 fm/c,
and the time dependence of the collective coordinates associated with the pygmy, Y, core,
Xc, and giant dipole modes, X, is obtained, by numerically solving the Vlasov equation
for protons and neutrons respectively. We recall that Y accounts for the distance between
the center of mass of the core and the center of mass of the excess neutrons, Xc accounts
for the distance between the center of mass of the protons and the center of mass of the
neutrons within the core, while X accounts for the distance between the center of mass
of the protons and the center of mass of all the neutrons.

In Fig. 4.5 we plot the time evolution of the total dipole, D, pygmy dipole, Dy, and
core dipole, Dc, moments (for definitions see Eq. (2.71 from Chapter 2)), following a
"pygmy-like" excitation for two parametrizations of the EOS. One can observe that while
Dy approaches its maximum value, a symmetry energy dependent oscillatory motion of
the core dipole, Dc, initiates. Within the HOSM, the core Hamiltonian, Hc and pygmy
Hamiltonian, Hy are independent (i.e. commute). Thus, one would expect, in agreement
with Eq. (2.71) that in a "pygmy-like" excitation, the core would remain inert, and the
total dipole, D, would be determined only by the pygmy dipole, Dy. However, our semi-
classical approach based on two coupled Vlasov equations for protons and neutrons, as
observed, provides a different scenario, in which the core becomes excited. The coupling
of the core is symmetry energy dependent, since, the larger the slope parameter, L, is, the
more delayed is the isovector core response. This can be explained by the fact that a larger
L corresponds to a larger neutron presence in the surface (see also Fig. 4.2), and so, a
smaller coupling to the core is expected. Additionally, we clearly remark that the pygmy
dipole oscillations are quite independent of the symmetry energy parametrization. At
variance, the total dipole, D, is evidently affected by the isovector part of the interaction,
and is influenced by the existence of the isovector core oscillations. The fastest vibrations
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Figure 4.6: Graphical representation of the power spectrum of total dipole (a) and pygmy
dipole Dy (b) (in fm4/c2), for asy-soft (solid blue lines), asy-stiff (dot-dashed black lines)
and asy-superstiff (dashed red lines) EOS, for a "pygmy-like" initial excitation.

of the total dipole are observed for the asy-soft EOS, and looking at Fig. 3.1, one can see
that this case corresponds to the largest value for the symmetry energy below saturation,
and lowest L. In contrast, the pygmy dipole vibrations are not affected by the value of
the symmetry energy below saturation, revealing the isoscalar-like nature of this mode.

Let us remind that a comparison of HOSM predictions with the experimental data,
concerning the exhausted EWSR by the pygmy mode, suggested that a part of the excess
neutrons could remain bound to the core. This seems to be confirmed by our self-
consistent transport simulations, because the core does not remain inert (see Fig. 4.5).
Later on, we shall present other evidences of this hypothesis. To estimate the energy
centroid associated with each collective dipole mode, we calculate the power spectrum of
the pygmy dipole, Dy(t):

|Dy(ω)|2 =

∣∣∣∣∫ tmax

t0

dt Dy(t) e−iωt
∣∣∣∣2 , (4.35)

and of the total dipole, D(t):

|D(ω)|2 =

∣∣∣∣∫ tmax

t0

dt D(t) e−iωt
∣∣∣∣2 , (4.36)

for each of the three asy-EOS parametrizations employed (see Figs. 4.6 and 4.7).
Confirming the qualitative observation, the position of the GDR centroid shifts to-

wards larger values when one moves from asy-superstiff (largest slope parameter) to asy-
soft (lowest slope parameter). The energy centroid corresponding to the pygmy mode
is situated well below the GDR one, quite insensitive to the symmetry energy density
parametrization. The PDR peak, for all the three cases is situated at ∼ 8.5 MeV,
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Figure 4.7: Graphical representation of the power spectrum of total dipole (a), pygmy
dipole Dy with Ny = Ne = 32 skin neutrons (b) and pygmy dipole Dy with Ny = 10 skin
neutrons (in fm4/c2), for asy-soft (solid blue lines), asy-stiff (dot-dashed black lines) and
asy-superstiff (dashed red lines) EOS, for a "GDR-like" initial excitation.
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clearly showing the isoscalar-like nature of this mode. A similar conclusion for Ni
isotopes was reported within a relativistic mean-field approach by Liang et al. [80].
While, within the schematic HOSM all dipole modes are degenerate, with an energy
E = 41 ·A−1/3 MeV ≈ 8 MeV for 132Sn isotope, in the semi-classical approach, the GDR
energy is pushed up by the isovector interaction. Consequently, the dipole response can
be explained in terms of the isoscalar-like (PDR) and isovector-like (GDR) modes, as
expected in asymmetric systems [81, 82]. Moreover, both isoscalar-like and isovector-like
modes are excited under a "pygmy-like" excitation.

To check the influence of the initial conditions on the dipole response let us now
consider a "GDR-like" excitation, with the initial energy close to the value associated
with first GDR excited state, i.e. ∼ 15 MeV. Now, even though the initial conditions
favors the isovector-like mode, a sizeable contribution in the pygmy region is evidenced.
The low lying energy response seems to be symmetry energy dependent, as can be seen
by comparing the total dipole Fourier spectra for the three parametrisations, shown in
Fig. 4.7 (a). This is even better evidenced from the Fourier power spectrum of the pygmy
dipole mode, as depicted in Fig. 4.7 (b). We mention that the result shown in Fig. 4.7 (b)
was obtained considering that the number of skin neutrons which determine the pygmy
dipole, is equal to the number of excess neutrons, i.e. Ny = Ne = 32. The part of the
power spectrum of the pygmy dipole, situated at energies associated to GDR, indicates,
however, that not all excess nucleons are coupled to the pygmy mode. A fraction of
them seems to be coupled to the core dynamics, consistent with the HOSM suggestion.
We tested further this suggestion, considering a new set of calculations, in which the
number of excess neutrons contributing to the pygmy dipole is reduced to Ny = 10,
the most peripheral out of the Ne = 32 neutrons. The power spectrum of the pygmy
dipole in this case, is reported in Fig. 4.7 (c). An enhancement of the response in the
pygmy region can be clearly remarked, simultaneously with the reduction of the response
in the GDR region. In other words, the relative weight increases in the pygmy region
when the Y coordinate is constructed with Ny = 10 most distant neutrons. Moreover,
a part of the excess neutrons are involved in an isovector-like motion and the relative
weight is symmetry energy dependent. One notices that in the case of asy-superstiff
parametrization more neutrons are involved in the pygmy-like motion, since the slope
parameter gives a larger skin size in this case.

Since a part of the neutrons that belong to the skin always contribute to the GDR
mode, an EWSR value lower than the HOSM predictions corresponding to Ny = Ne = 32
is expected. Consequently, this explains why in the Fourier power spectrum of the total
dipole, D, a weak response is seen at the pygmy frequency.

From this investigation the question on how to appropriately excite the pygmy dipole
resonance arises, and, in this respect, nuclear rather than electromagnetic probes can
induce neutron skin excitations closer to our first class of initial conditions (i.e. the
"pygmy-like" ones) [83, 84]. Calvayrac et al. [85] showed that, in the case of "GDR-like"
initial excitation, one can relate the strength function to the imaginary part of the Fourier
transform of the total dipole, D(ω), and consequently, the corresponding cross-section
can be calculated. In this respect, let us assume the nucleus under the photon-excitation
driven by a classical field. Considering a very fast process, we can write the perturbation
as:

Vext = η δ(t) D ≡ η δ(t)
NZ

A
X , (4.37)
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with η being the perturbation strength, and D being the dipole operator. The effect
of this perturbation corresponds to a dipolar velocity field superimposed on the ground
state, |Φ0〉, so that the new state is [85]:

|Φ(0)〉 = e iηD |Φ0〉 . (4.38)

The expectation value of the collective momenta, P, can be written as follows:

〈Φ(0)|P|Φ(0)〉 = 〈Φ0| e−iηD P e iηD |Φ0〉
= 〈Φ0| e−iηD eiηD P |Φ0〉+ 〈Φ0| e−iηD [P, e iηD]|Φ0〉
= 〈Φ0| e−iηD [P, e iηD]|Φ0〉 , (4.39)

since the expectation value of the collective momenta in the ground state, 〈Φ0|P|Φ0〉,
should be zero. The commutator in Eq. (4.39) can be expressed as:

[P, e iηD] = − i ~ ∂

∂x
e iηD = ~ η

NZ

A
e iηD , (4.40)

and consequently, Eq. (4.39) becomes:

〈Φ(0)|P|Φ(0)〉 = 〈Φ0| e−iηD ~ η
NZ

A
e iηD|Φ0〉 = ~ η

NZ

A
. (4.41)

Now it is possible to relate the value for the strength of the perturbation, η, to the
expectation value of the initial collective momenta, induced by the perturbation:

〈P〉 =

√
2m

NZ

A
~ω0 ≡

√
2µ ~ω0 = ~ η

NZ

A
, (4.42)

with ω0 being the frequency of the undamped harmonic oscillator. Consequently, we find
the perturbation strength as:

η =

√
2mAω0

NZ ~
. (4.43)

To estimate the strength function, S(E), we shall now consider the Fourier transform
of a weakly damped total dipole, D(t) = D0 sin(ω0t) e−γt, with γ sufficiently small:

D(ω) =

∫ ∞
0

D0 sin(ω0t) e−γt eiωt dt . (4.44)

Using an exponential representation of the sine function (e.g. sin(ω0t) = (eiω0t −
e−iω0t)/2i) we obtain:

D(ω) =
D0

2i

(
1

i(ω − ω0)− γ
− 1

i(ω + ω0)− γ

)
. (4.45)

Considering now that the damping factor is sufficiently small, γ → 0, and since the

imaginary part of the
1

ω0 ± ω
can be written using the δ-Dirac function as iπδ(ω0 ± ω)

[85], the imaginary part of the Fourier transformed dipole becomes:

I (D(ω)) = D0
π

2
δ(ω − ω0) , (4.46)
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and, consequently, the strength function, S(ω), is:

S(ω) =
I (D(ω))

π η
=

1

2

D0

η
δ(ω − ω0) . (4.47)

To evaluate the amplitude, D0, we express the energy stored in a harmonic oscillator
as:

~ω0 =
1

2
kX2 =

1

2
µω2

0

D2
0

NZ/A
=

1

2
m
NZ

A
ω2
0

D2
0

NZ2/A
, (4.48)

and one has:

D0 =

√
2~
mω0

NZ

A
. (4.49)

Therefore, using Eq. (4.43), we have:

D0

η
=

√
2~
mω0

NZ

A

√
NZ

A

~
2mω0

=
~

mω0

NZ

A
=

~2

mE0

NZ

A
. (4.50)

Now, within a constant of
4π2e2

~c
, the total cross section for the dipole absorption, σD,

can be expressed:

σD ∼
∫ ∞
0

E S(E) dE =

∫ ∞
0

E
S(ω)

~
dE =

∫ ∞
0

E
1

2

D0

η

δ(ω − ω0)

~
dE

=

∫ ∞
0

E
1

2

D0

η
δ(E − E0) dE =

1

2
E0

D0

η
=

~2

2m

NZ

A
, (4.51)

showing that, indeed, with the strength function obtained as the imaginary part of the
dipole Fourier transform, we recover the known value for the EWSR.

Returning to our simulations, we assume that a number of ten oscillations (See also
Fig. 4.8) in the presence of Landau damping will provide an approximate, yet reliable
estimate of the strength function. In Fig. 4.9 the dipolar cross-section, σ(E), is plotted
for two different asy-EOS, using the information provided by the numerical simulations,
and following the prescription described above. The numerically obtained value for the
total cross section represents more than 90% of the theoretical value presented in Eq.
(4.51).

Now, we estimate the total strength associated with PDR, integrating the cross sec-
tion over the PDR region (i.e. between ∼ 6 MeV and ∼ 9 MeV). Our calculations show
that the fraction of the EWSR exhausted by the pygmy mode represents 2.8% for asy-
soft, 4.5% for asy-stiff and 4.6% for asy-superstiff respectively, and consequently, a good
agreement with the experimental value of ∼ 4% reported by Adrich et. al [8] is achieved.
These values again confirm that not all the excess neutrons participate to the pygmy
oscillations. The EWSR exhausted by the pygmy mode is proportional to the skin thick-
ness, in agreement with the results obtained by Inakura et al. [86]. We conclude that
while the skin thickness does not affect the position of the PDR centroid, it influences
the amount of EWSR exhausted by the pygmy mode.

In the final part of this Section we extend the previous analysis to other neutron
rich nuclei, from the lighter 48Ca and 68Ni to heavier 208Pb, in order to study the mass
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Figure 4.8: Graphical representation of the time evolution of the total dipole D for
asy-soft (blue lines - top ), asy-stiff (black lines - middle) and asy-superstiff (red lines -
bottom) EOS, for a "GDR-like" initial excitation. The initial energy associated with the
kinetic part of the collective energy is 9 MeV.

Figure 4.9: Graphical representation of the cross section, σ(E), dependence on the
energy, for asy-stiff (black lines - top) and asy-superstiff (red lines - bottom) EOS.
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Figure 4.10: Power spectrum for the pygmy (red lines) and giant (black lines) modes,
reported with our semi-classical approach, using the asy-soft EOS for 48Ca (a), 68Ni (b),
132Sn (c) and for 208Pb (d).

dependence of the PDR. For these systems, as already discussed in the Introduction,
theoretical and experimental data are available.

Considering "pygmy-like" excitations, we identified the pygmy and GDR response, as
shown in Fig. 4.10. The mass dependence of the pygmy energy centroid is plotted in
Fig. 4.11, together with the experimentally reported values and the predictions of other
theoretical models. We notice a surprisingly good agreement with the experimental data.

Hartmann et al. [19], within a high resolution photon scattering approach up to
10 MeV studied the calcium isotopes, 40Ca and 48Ca. A concentration of the low-lying
dipole strength between 7 to 9 MeV, for 48Ca isotope, was identified. Our theoretical
estimations for the energy centroid of the pygmy mode is around ∼ 11.5 MeV (see Fig.
4.11), suggesting that part of the low-lying dipole response can be detected experimentally
also above 10 MeV. Moreover, the theoretical predictions made within density functional
theory formalism by Chambers et al. [34] suggest that the centroid energy for the pygmy
mode lies around ∼ 7.5 MeV, lower than our predictions. All these comments show that
further investigations, both theoretical and experimental are required.

Quite recently, using the virtual photon scattering technique, Wieland et al. [22]
reported the existence of a peak in the dipole response centered at approximately 11 eV,
attributed to the low lying dipole response of the neutron rich nickel isotope, 68Ni. This
peak is found to be well below the GDR centroid, whose energy lies near 17 MeV. With
our semi-classical approach based on two coupled Landau-Vlasov equations, the energy
centroids for the nickel isotope, 68Ni, are reported at ∼ 10 MeV and ∼ 16 MeV for PDR
and GDR respectively. By means of a random phase approximation approach with various
types of interactions used, Roca-Maza et al. [33], report the pygmy centroid to range from
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Figure 4.11: Mass dependence of the energy centroids for pygmy (circles) and giant
(squares) modes, reported with our semi-classical approach, using the asy-soft EOS
(empty circles/squares) and within a RPA formalism [33] (blue diamonds). Experimental
values (full circles/squares) are reported from Ref. [19] for 48Ca, from Ref. [22] for 68Ni,
from Ref. [8] for 132Sn and from Ref. [25] for 208Pb.

9.3 MeV (using the SLy5 force) to 10.45 MeV (using the SkI3 force), and therefore, in good
agreement with our prediction. In the same study [33], the energy centroid corresponding
to the PDR for the tin, 132Sn, and lead, 208Pb, isotopes ranges from 8.52 MeV (using the
SGII force) to 9.23 MeV (with SkI3) for tin, and from 7.61 MeV (SGII) to 8.01 MeV
(SkI3) for lead, and consequently, in quite good accordance with the centroids obtained
within our approach (see Fig. 4.11). Simmilar results are obtained within the relativistic
RPA framework by Piekarewicz [2], which reported a pygmy centroid around ∼ 8 MeV
(with various models employed, i.e. FSUGold, FSUGold’, NL3 and NL3’), while for GDR
a peak ranging from 14.46 MeV (NL3’) to 16.59 MeV (FSUGold’) is obtained. Moreover,
the theoretical predictions are in line with experimental data obtained by Adrich et al. [8]
for 132Sn within a Coulomb dissociation technique following an in-flight fission of a 238U
beam, and by Tamii et al. [25] for 208Pb, within a polarized proton inelastic scattering
at very forward angles approach.

Concluding, we remark that the results obtained with our approach for PDR are
in quite good agreement with other experimental or theoretical works, while, for the
GDR case a qualitative agreement is achieved too. A mass parametrisation of the PDR
centroid of 42 ·A−1/3 MeV is obtained. This parametrisation is close to the HOSM energy
for degenerate dipole modes in the absence of isovector interaction, pointing again to an
isoscalar character of PDR. This is in agreement with our previous observation concerning
the insensitivity of PDR centroid to the density parametrisation of the nuclear mean field
in the isovector channel.
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Chapter 5

Conclusions and perspectives

In summary, within this thesis, we explored new aspects of the dipole motions in neu-
tron rich nuclei. The existence of a collective pygmy dipole mode in these systems is
evidenced within both harmonic oscillator shell model (HOSM) and a semi-classical, self-
consistent microscopic approach based on two Landau-Vlasov equations (for protons and
neutrons) involving Skyrme-like mean-fields. We provided both qualitative arguments
resulting from the power spectrum analysis of different dipolar degrees of freedom as well
as quantitative, by estimating the exhausted EWSR associated with this mode. The
HOSM predicts an upper limit for the energy weighted sum rule exhausted by the pygmy

mode, fy =
NeZ

NAc
, where Ne represents the number of neutrons in excess, while Ac is the

mass number of the core. A comparative analysis of our results for several neutron rich
isotopes (i.e. calcium, nickel, tin and lead) with experimental data, shows that, if all
excess neutrons are considered to take part in the pygmy-type oscillations, this fraction
fy overestimates the experimental values. Considering that a part from the excess neu-
trons are bound to the core, if less neutrons are considered in the skin, Ny < Ne, then

the Thomas-Reiche-Kuhn sum rule diminishes, and the corresponding fraction fy =
NyZ

NAc
approaches the experimental data. We verified this hypothesis within a self consistent
semi-classical model based on kinetic Vlasov equations. In this approach we first focused
our attention on the doubly-magic tin isotope, 132Sn. From the transport simulations we
predict that the energy centroid that corresponds to the PDR is located around 8.5 MeV.
This centroid is situated well below the GDR peak (which is located at 13 MeV for an asy-
soft parametrization of the asy-EOS), and is insensitive to the symmetry parametrization
employed, revealing the isoscalar-like character of the pygmy mode. However, since the
slope parameter varies with the three different parametrizations employed for the symme-
try energy (asy-soft, asy-stiff and asy-superstiff ) the number of neutrons on the nuclear
surface is affected, and thus, the neutrons participating in the pygmy mode varies as well.
Consequently, the EWSR exhausted by the pygmy mode varies from 2.8% for asy-soft
to 4.5% for asy-stiff and 4.6% for asy-superstiff, proportional to the slope parameter,
L. We stress that this behaviour can be also related to the S-J component of the dipole
dynamics in medium-heavy nuclei, where the dipole motion cannot be fully described by
a pure G-T component.

Lastly, within the same semi-classical approach, the mass dependence of the PDR
and GDR energy centroids is obtained. We extract a parametrisation 42 · A−1/3 MeV,
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for the pygmy and 62 · A−1/3 MeV, for the giant modes respectively, in good agreement
with experimental data (in special for the case of PDR). We stress that our transport
model employing an energy density functional can be extended to include additional
correlation effects by considering terms depending on density gradients, accounting for
additional nucleon-nucleon correlations. Moreover, we would like to mention that such
self-consistent, transport approaches, can be valuable in exploring the collective response
of other mesoscopic systems where similar normal modes may manifest, see [87] for a
time-dependent approach to the surface and volume plasmons in Buckminsterfullerene
and [88] for a study of out-of-phase dipolar oscillation of the thermal cloud and Bose-
Einstein condensate.

63



Bibliography

[1] J. Gaardhøje, A. Bruce, and B. Herskind, “Nuclear collective motion under extreme
conditions: The GDR at very high spin and temperature,” Nucl. Phys. A, vol. 482,
no. 1–2, pp. 121 – 139, 1988.

[2] J. Piekarewicz, “Pygmy dipole resonance as a constraint on the neutron skin of heavy
nuclei,” Phys. Rev. C, vol. 73, p. 044325, Apr 2006.

[3] S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Arm-
strong, T. Averett, B. Babineau, A. Barbieri, V. Bellini, R. Beminiwattha, J. Be-
nesch, F. Benmokhtar, T. Bielarski, W. Boeglin, A. Camsonne, M. Canan, P. Carter,
G. D. Cates, C. Chen, J.-P. Chen, O. Hen, F. Cusanno, M. M. Dalton, R. De Leo,
K. de Jager, W. Deconinck, P. Decowski, X. Deng, A. Deur, D. Dutta, A. Etile,
D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, F. Garibaldi, E. Gasser,
R. Gilman, A. Giusa, A. Glamazdin, J. Gomez, J. Grames, C. Gu, O. Hansen,
J. Hansknecht, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz,
J. Hoskins, J. Huang, C. E. Hyde, F. Itard, C.-M. Jen, E. Jensen, G. Jin, S. John-
ston, A. Kelleher, K. Kliakhandler, P. M. King, S. Kowalski, K. S. Kumar, J. Lea-
cock, J. Leckey, J. H. Lee, J. J. LeRose, R. Lindgren, N. Liyanage, N. Lubinsky,
J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, A. McCreary, D. Mc-
Nulty, L. Mercado, Z.-E. Meziani, R. W. Michaels, M. Mihovilovic, N. Muangma,
C. Muñoz Camacho, S. Nanda, V. Nelyubin, N. Nuruzzaman, Y. Oh, A. Palmer,
D. Parno, K. D. Paschke, S. K. Phillips, B. Poelker, R. Pomatsalyuk, M. Posik,
A. J. R. Puckett, B. Quinn, A. Rakhman, P. E. Reimer, S. Riordan, P. Rogan,
G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Sil-
wal, S. Sirca, K. Slifer, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi,
R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli,
B. Waidyawansa, D. Wang, J. Wexler, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao,
Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, and P. Zhu,
“Measurement of the Neutron Radius of 208Pb through Parity Violation in Electron
Scattering,” Phys. Rev. Lett., vol. 108, p. 112502, Mar 2012.

[4] S. Karataglidis, K. Amos, B. A. Brown, and P. K. Deb, “Discerning the neutron
density distribution of 208Pb from nucleon elastic scattering,” Phys. Rev. C, vol. 65,
p. 044306, Mar 2002.

[5] N. Fukunishi, T. Otsuka, and I. Tanihata, “Neutron-skin and proton-skin formations
in exotic nuclei far from stability,” Phys. Rev. C, vol. 48, pp. 1648–1655, Oct 1993.

64



[6] I. Tanihata, D. Hirata, T. Kobayashi, S. Shimoura, K. Sugimoto, and H. Toki,
“Revelation of thick neutron skins in nuclei,” Phys. Lett. B, vol. 289, no. 3–4, pp. 261
– 266, 1992.

[7] P. G. Hansen and B. Jonson, “The neutron halo of extremely neutron-rich nuclei,”
Europhys. Lett., vol. 4, no. 4, p. 409, 1987.

[8] P. Adrich, A. Klimkiewicz, M. Fallot, K. Boretzky, T. Aumann, D. Cortina-Gil,
U. D. Pramanik, T. W. Elze, H. Emling, H. Geissel, M. Hellström, K. L. Jones,
J. V. Kratz, R. Kulessa, Y. Leifels, C. Nociforo, R. Palit, H. Simon, G. Surówka,
K. Sümmerer, and W. Waluś, “Evidence for Pygmy and Giant Dipole Resonances in
130Sn and 132Sn,” Phys. Rev. Lett., vol. 95, p. 132501, Sep 2005.

[9] B. Özel, J. Enders, P. von Neumann-Cosel, I. Poltoratska, A. Richter, D. Savran,
S. Volz, and A. Zilges, “Systematics of the pygmy dipole resonance in stable tin
isotopes from resonant photon scattering,” Nucl. Phys. A, vol. 788, no. 1–4, pp. 385
– 388, 2007.

[10] A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky, T. Aumann, D. Cortina-
Gil, U. D. Pramanik, T. W. Elze, H. Emling, H. Geissel, M. Hellström, K. L. Jones,
J. V. Kratz, R. Kulessa, C. Nociforo, R. Palit, H. Simon, G. Surówka, K. Sümmerer,
D. Vretenar, and W. Waluś, “Nuclear symmetry energy and neutron skins derived
from pygmy dipole resonances,” Phys. Rev. C, vol. 76, p. 051603, Nov 2007.

[11] A. Carbone, G. Colò, A. Bracco, L.-G. Cao, P. F. Bortignon, F. Camera, and
O. Wieland, “Constraints on the symmetry energy and neutron skins from pygmy
resonances in 68Ni and 132Sn,” Phys. Rev. C, vol. 81, p. 041301, Apr 2010.

[12] S. Yoshida and H. Sagawa, “Isovector nuclear matter properties and neutron skin
thickness,” Phys. Rev. C, vol. 73, p. 044320, Apr 2006.

[13] S. Yoshida and H. Sagawa, “Neutron skin thickness and equation of state in asym-
metric nuclear matter,” Phys. Rev. C, vol. 69, p. 024318, Feb 2004.

[14] P.-G. Reinhard and W. Nazarewicz, “Information content of a new observable: The
case of the nuclear neutron skin,” Phys. Rev. C, vol. 81, p. 051303, May 2010.

[15] N. Paar, “The quest for novel modes of excitation in exotic nuclei,” J. Phys. G: Nucl.
Part. Phys., vol. 37, no. 6, p. 064014, 2010.

[16] N. Paar, D. Vretenar, E. Khan, and G. Colò, “Exotic modes of excitation in atomic
nuclei far from stability,” Rep. Prog. Phys., vol. 70, no. 5, p. 691, 2007. http:
//stacks.iop.org/0034-4885/70/i=5/a=R02.

[17] D. Sarchi, P. Bortignon, and G. Colò, “Dipole states in stable and unstable nuclei,”
Phys. Lett. B, vol. 601, no. 1–2, pp. 27 – 33, 2004.

[18] S. Ottini-Hustache, N. Alamanos, F. Auger, B. Castel, Y. Blumenfeld, V. Chiste,
N. Frascaria, A. Gillibert, C. Jouanne, V. Lapoux, F. Marie, W. Mittig, J. C.
Roynette, and J. A. Scarpaci, “Anomalous E1 and E2 strengths in 40Ca and 48Ca at

65

http://stacks.iop.org/0034-4885/70/i=5/a=R02
http://stacks.iop.org/0034-4885/70/i=5/a=R02


low excitation energy: A comparative study,” Phys. Rev. C, vol. 59, pp. 3429–3432,
Jun 1999.

[19] T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and A. Zilges, “Measurement
of the Dipole and Electric Quadrupole Strength Distributions up to 10 MeV in the
Doubly Magic Nuclei 40Ca and 48Ca,” Phys. Rev. Lett., vol. 85, pp. 274–277, Jul
2000.

[20] T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and A. Zilges, “Dipole and
electric quadrupole excitations in 40,48Ca,” Phys. Rev. C, vol. 65, p. 034301, Feb
2002.

[21] T. Hartmann, M. Babilon, S. Kamerdzhiev, E. Litvinova, D. Savran, S. Volz, and
A. Zilges, “Microscopic Nature of the Pygmy Dipole Resonance: The Stable Ca
Isotopes,” Phys. Rev. Lett., vol. 93, p. 192501, Nov 2004.

[22] O. Wieland, A. Bracco, F. Camera, G. Benzoni, N. Blasi, S. Brambilla, F. C. L.
Crespi, S. Leoni, B. Million, R. Nicolini, A. Maj, P. Bednarczyk, J. Grebosz,
M. Kmiecik, W. Meczynski, J. Styczen, T. Aumann, A. Banu, T. Beck, F. Becker,
L. Caceres, P. Doornenbal, H. Emling, J. Gerl, H. Geissel, M. Gorska, O. Kavatsyuk,
M. Kavatsyuk, I. Kojouharov, N. Kurz, R. Lozeva, N. Saito, T. Saito, H. Schaffner,
H. J. Wollersheim, J. Jolie, P. Reiter, N. Warr, G. deAngelis, A. Gadea, D. Napoli,
S. Lenzi, S. Lunardi, D. Balabanski, G. LoBianco, C. Petrache, A. Saltarelli, M. Cas-
toldi, A. Zucchiatti, J. Walker, and A. Bürger, “Search for the Pygmy Dipole Res-
onance in 68Ni at 600 MeV/nucleon,” Phys. Rev. Lett., vol. 102, p. 092502, Mar
2009.

[23] O. Wieland and A. Bracco, “The pygmy dipole resonance in 68Ni and the neutron
skin,” Prog. Part. Nuc. Phys., vol. 66, no. 2, pp. 374 – 378, 2011.

[24] D. Savran, M. Fritzsche, J. Hasper, K. Lindenberg, S. Müller, V. Y. Ponomarev,
K. Sonnabend, and A. Zilges, “Fine Structure of the Pygmy Dipole Resonance in
136Xe,” Phys. Rev. Lett., vol. 100, p. 232501, Jun 2008.

[25] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, C. A.
Bertulani, J. Carter, M. Dozono, H. Fujita, K. Fujita, K. Hatanaka, D. Ishikawa,
M. Itoh, T. Kawabata, Y. Kalmykov, A. M. Krumbholz, E. Litvinova, H. Matsub-
ara, K. Nakanishi, R. Neveling, H. Okamura, H. J. Ong, B. Özel-Tashenov, V. Y.
Ponomarev, A. Richter, B. Rubio, H. Sakaguchi, Y. Sakemi, Y. Sasamoto, Y. Shim-
bara, Y. Shimizu, F. D. Smit, T. Suzuki, Y. Tameshige, J. Wambach, R. Yamada,
M. Yosoi, and J. Zenihiro, “Complete Electric Dipole Response and the Neutron
Skin in 208Pb,” Phys. Rev. Lett., vol. 107, p. 062502, Aug 2011.

[26] R. Mohan, M. Danos, and L. C. Biedenharn, “Three-fluid hydrodynamical model of
nuclei,” Phys. Rev. C, vol. 3, pp. 1740–1749, May 1971.

[27] H. Steinwedel and J. Jensen, “Hydrodynamik von Kerndipolschwingungen,” Z.
Naturforschung Teil A, vol. 5, pp. 413–420, 1950.

66



[28] Y. Suzuki, K. Ikeda, and H. Sato, “New type of dipole vibration in nuclei,” Progr.
Theoret. Phys., vol. 83, no. 2, pp. 180–184, 1990.

[29] S. Bastrukov, I. Molodtsova, D. Podgainy, S. Mişicu, and H.-K. Chang, “Elasticity
of nuclear medium as a principal macrodynamical promoter of electric pygmy dipole
resonance,” Phys. Lett. B, vol. 664, no. 4–5, pp. 258 – 264, 2008.

[30] N. Tsoneva and H. Lenske, “Pygmy dipole resonances in the tin region,” Phys. Rev.
C, vol. 77, p. 024321, Feb 2008.

[31] G. Co’, V. D. Donno, C. Maieron, M. Anguiano, and A. M. Lallena, “Evolution of
the pygmy dipole resonance in nuclei with neutron excess,” Phys. Rev. C, vol. 80,
p. 014308, Jul 2009.

[32] K. Yoshida, “Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the
drip line,” Phys. Rev. C, vol. 80, p. 044324, Oct 2009.

[33] X. Roca-Maza, G. Pozzi, M. Brenna, K. Mizuyama, and G. Colò, “Low-lying dipole
response: Isospin character and collectivity in 68Ni, 132Sn, and 208Pb,” Phys. Rev. C,
vol. 85, p. 024601, Feb 2012.

[34] J. Chambers, E. Zaremba, J. P. Adams, and B. Castel, “Pygmy dipole resonances in
the calcium isotopes,” Phys. Rev. C, vol. 50, pp. R2671–R2674, Dec 1994.

[35] D. Vretenar, N. Paar, P. Ring, and G. Lalazissis, “Collectivity of the low-lying
dipole strength in relativistic random phase approximation,” Nucl. Phys. A, vol. 692,
no. 3–4, pp. 496 – 517, 2001.

[36] D. Vretenar, T. Niksic, N. Paar, and P. Ring, “Relativistic QRPA description of low-
lying dipole strength in neutron-rich nuclei,” Nucl. Phys. A, vol. 731, no. 0, pp. 281
– 288, 2004.

[37] E. Litvinova, P. Ring, and V. Tselyaev, “Relativistic quasiparticle time blocking ap-
proximation: Dipole response of open-shell nuclei,” Phys. Rev. C, vol. 78, p. 014312,
Jul 2008.

[38] D. P. Arteaga, E. Khan, and P. Ring, “Isovector dipole strength in nuclei with
extreme neutron excess,” Phys. Rev. C, vol. 79, p. 034311, Mar 2009.

[39] J. Endres, E. Litvinova, D. Savran, P. A. Butler, M. N. Harakeh, S. Harissopu-
los, R.-D. Herzberg, R. Krücken, A. Lagoyannis, N. Pietralla, V. Y. Ponomarev,
L. Popescu, P. Ring, M. Scheck, K. Sonnabend, V. I. Stoica, H. J. Wörtche, and
A. Zilges, “Isospin Character of the Pygmy Dipole Resonance in 124Sn,” Phys. Rev.
Lett., vol. 105, p. 212503, Nov 2010.

[40] D. Vretenar, Y. F. Niu, N. Paar, and J. Meng, “Low-energy isovector and isoscalar
dipole response in neutron-rich nuclei,” Phys. Rev. C, vol. 85, p. 044317, Apr 2012.

[41] V. Abrosimov and O. Davydovs’ka, “Semiclassical model of dipole pygmy-resonance
in nuclei with neutron excess,” Ukr. J. Phys., vol. 54, pp. 1068–1072, 2009.

67



[42] B. Frecus, PhD Research Report. University of Bucharest, 2010.

[43] M. Urban, “Pygmy resonance and torus mode within Vlasov dynamics,” Phys. Rev.
C, vol. 85, p. 034322, Mar 2012.

[44] M. Baldo, P. Schuck, and X. Viñas, “Kohn–Sham density functional inspired ap-
proach to nuclear binding,” Phys. Lett. B, vol. 663, no. 5, pp. 390 – 394, 2008.

[45] D. Brink, “Individual particle and collective aspects of the nuclear photoeffect,” Nucl.
Phys., vol. 4, no. 0, pp. 215 – 220, 1957.

[46] M. Goldhaber and E. Teller, “On nuclear dipole vibrations,” Phys. Rev., vol. 74,
pp. 1046–1049, Nov 1948.

[47] A. Bohr and B. R. Mottelson, Nuclear Structure. World Scientific, Singapore, 1998.

[48] E. Lipparini, Modern many-body physics. World Scientific, 2003.

[49] E. Lipparini and S. Stringari, “Sum rules and giant resonances in nuclei,” Phys. Rep.,
vol. 175, no. 3–4, pp. 103 – 261, 1989.

[50] P. Ring and P. Schuck, The Nuclear Many-Body Problem. Springer, 2004.

[51] V. Baran, B. Frecus, M. Colonna, and M. Di Toro, “Pygmy dipole resonance: Col-
lective features and symmetry energy effects,” Phys. Rev. C, vol. 85, p. 051601, May
2012.

[52] V. Baran, B. Frecus, M. Colonna, M. Di Toro, and R. Zus, “Collective dipole modes
in nuclear systems,” Rom. Journ. Phys., vol. 57, pp. 36–48, 2012.

[53] Y. Alhassid, M. Gai, and G. F. Bertsch, “Radiative width of molecular-cluster states,”
Phys. Rev. Lett., vol. 49, pp. 1482–1485, Nov 1982.

[54] H. Kurasawa and T. Suzuki, “A Sum-Rule Constraint on the Soft Dipole Mode,”
Prog. Theor. Phys., vol. 94, no. 5, pp. 931–936, 1995.

[55] L.-G. Cao and Z.-Y. Ma, “Soft dipole modes in neutron-rich Ni-isotopes in QRRPA,”
Mod. Phys. Lett. A, vol. 19, no. 38, pp. 2845–2856, 2004.

[56] N. Ryezayeva, T. Hartmann, Y. Kalmykov, H. Lenske, P. von Neumann-Cosel, V. Y.
Ponomarev, A. Richter, A. Shevchenko, S. Volz, and J. Wambach, “Nature of Low-
Energy Dipole Strength in Nuclei: The Case of a Resonance at Particle Threshold
in 208Pb,” Phys. Rev. Lett., vol. 89, p. 272502, Dec 2002.

[57] V. Baran, C. Rizzo, M. Colonna, M. D. Toro, and D. Pierroutsakou, “Dynamical
dipole mode in fusion reactions with exotic nuclear beams,” Phys. Rev. C, vol. 79,
p. 021603, Feb 2009.

[58] V. Baran, D. M. Brink, M. Colonna, and M. Di Toro, “Collective Dipole
Bremsstrahlung in Fusion Reactions,” Phys. Rev. Lett., vol. 87, p. 182501, Oct 2001.

68



[59] V. Baran, M. Colonna, M. D. Toro, and A. Larionov, “Zero- to first-sound transition
for the Giant Dipole propagation in hot nuclei,” Nucl. Phys. A, vol. 649, no. 1–4,
pp. 185 – 192, 1999.

[60] A. Larionov, M. Cabibbo, V. Baran, and M. D. Toro, “Zero-to-first sound transition
for isovector modes in hot nuclei,” Nucl. Phys. A, vol. 648, no. 3–4, pp. 157 – 180,
1999.

[61] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Phys. Rev., vol. 136,
pp. B864–B871, Nov 1964.

[62] D. Lacroix, Quantum nuclear many-body dynamics and related aspects. Habilitation
thesis, Grand Accélérateur National d’Ions Lourds, 2011.

[63] T. Skyrme, “The effective nuclear potential,” Nucl. Phys., vol. 9, no. 4, pp. 615 –
634, 1958–1959.

[64] K. Langanke, J. Maruhn, and S. Koonin, Computational Nuclear Physics 2: Nuclear
Reactions. Springer-Verlag, 1993.

[65] P. Vesely, Collective Nuclear Excitations within Skyrme Separable RPA. Doctoral
thesis, Faculty of Mathematics and Physics Charles University in Prague, 2009.

[66] V. Baran, M. Colonna, V. Greco, and M. D. Toro, “Reaction dynamics with exotic
nuclei,” Phys. Rep., vol. 410, no. 5–6, pp. 335 – 466, 2005.

[67] G. Colò, “The compression modes in atomic nuclei and their relevance for the nuclear
equation of state,” Phys. Part. Nucl., vol. 39, pp. 286–305, 2008.

[68] M. Colonna, M. D. Toro, and A. Larionov, “Collective modes in asymmetric nuclear
matter,” Phys. Lett. B, vol. 428, no. 1–2, pp. 1 – 7, 1998.

[69] B.-A. Li, L.-W. Chen, and C. M. Ko, “Recent progress and new challenges in isospin
physics with heavy-ion reactions,” Phys. Rep., vol. 464, no. 4–6, pp. 113 – 281, 2008.

[70] V. Baran, M. Colonna, M. Di Toro, V. Greco, M. Zielinska-Pfabe, and H. Wolter,
“Isospin effects in nuclear fragmentation,” Phys. Atom. Nucl., vol. 66, pp. 1460–1470,
2003.

[71] G. Bertsch and S. D. Gupta, “A guide to microscopic models for intermediate energy
heavy ion collisions,” Phys. Rep., vol. 160, no. 4, pp. 189 – 233, 1988.

[72] D. Brink and M. D. Toro, “Dynamics of a semiclassical nuclear Hartree-Fock fluid,”
Nucl. Phys. A, vol. 372, no. 1–2, pp. 151 – 172, 1981.

[73] V. Kolomietz and S. Shlomo, “Nuclear Fermi-liquid drop model,” Phys. Rep.,
vol. 390, no. 3, pp. 133 – 233, 2004.

[74] A. Bonasera, F. Gulminelli, and J. Molitoris, “The Boltzmann equation at the bor-
derline. A decade of Monte Carlo simulations of a quantum kinetic equation,” Phys.
Rep., vol. 243, no. 1–2, pp. 1 – 124, 1994.

69



[75] C. Grégoire, B. Remaud, F. Sébille, L. Vinet, and Y. Raffray, “Semi-classical dynam-
ics of heavy-ion reactions,” Nucl. Phys. A, vol. 465, no. 2, pp. 317 – 338, 1987.

[76] D. C. M. Steven E. Koonin, Computational Physics: Fortran version. Westview
Press, 1990.

[77] P. Schuck, R. Hasse, J. Jaenicke, C. Grégoire, B. Rémaud, F. Sébille, and E. Suraud,
“Semiclassical and phase space approaches to dynamic and collisional problems of
nuclei,” Prog. Part. Nuc. Phys., vol. 22, no. 0, pp. 181 – 278, 1989.

[78] S. Yoshida, H. Sagawa, and N. Takigawa, “Incompressibility and density distributions
in asymmetric nuclear systems,” Phys. Rev. C, vol. 58, pp. 2796–2806, Nov 1998.

[79] N. Paar, T. Nikšić, D. Vretenar, and P. Ring, “Isotopic dependence of the pygmy
dipole resonance,” Phys. Lett. B, vol. 606, no. 3–4, pp. 288 – 294, 2005.

[80] J. Liang, L.-G. Cao, and Z.-Y. Ma, “Pygmy and giant dipole resonances in Ni iso-
topes,” Phys. Rev. C, vol. 75, p. 054320, May 2007.

[81] V. Baran, M. Colonna, M. Di Toro, and V. Greco, “Nuclear Fragmentation: Sampling
the Instabilities of Binary Systems,” Phys. Rev. Lett., vol. 86, pp. 4492–4495, May
2001.

[82] M. Colonna, P. Chomaz, and S. Ayik, “Mechanical and Chemical Spinodal Instabil-
ities in Finite Quantum Systems,” Phys. Rev. Lett., vol. 88, p. 122701, Mar 2002.

[83] A. Vitturi, E. G. Lanza, M. V. Andrés, F. Catara, and D. Gambacurta, “Giant and
Pygmy Dipole Resonances in neutron-rich nuclei: their excitation via Coulomb and
nuclear fields,” J. Phys. Conf. Ser., vol. 267, no. 1, p. 012006, 2011.

[84] E. G. Lanza, A. Vitturi, M. V. Andrés, F. Catara, and D. Gambacurta, “Excitations
of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear
fields,” Phys. Rev. C, vol. 84, p. 064602, Dec 2011.

[85] F. Calvayrac, P. Reinhard, and E. Suraud, “Spectral Signals from Electronic Dy-
namics in Sodium Clusters,” Ann. Phys., vol. 255, no. 1, pp. 125 – 162, 1997.

[86] T. Inakura, T. Nakatsukasa, and K. Yabana, “Emergence of pygmy dipole resonances:
Magic numbers and neutron skins,” Phys. Rev. C, vol. 84, p. 021302, Aug 2011.

[87] S. W. J. Scully, E. D. Emmons, M. F. Gharaibeh, R. A. Phaneuf, A. L. D. Kilcoyne,
A. S. Schlachter, S. Schippers, A. Müller, H. S. Chakraborty, M. E. Madjet, and
J. M. Rost, “Photoexcitation of a Volume Plasmon in C60 Ions,” Phys. Rev. Lett.,
vol. 94, p. 065503, Feb 2005.

[88] D. M. Stamper-Kurn, H.-J. Miesner, S. Inouye, M. R. Andrews, and W. Ketterle,
“Collisionless and Hydrodynamic Excitations of a Bose-Einstein Condensate,” Phys.
Rev. Lett., vol. 81, pp. 500–503, Jul 1998.

70



List of publications

Paper I. V. Baran, B. Frecus, M. Colonna, and M. Di Toro, Pygmy dipole reso-
nance: Collective features and symmetry energy effects, Physical Review C, 85,
051601(2012).

Paper II. V. Baran, B. Frecus, M. Colonna, M. Di Toro, and R. Zus Collective dipole
modes in nuclear systems , Romanian Journal of Physics, 57, 36(2012).

Paper III. M. Colonna, V. Baran, M. Di Toro, B. Frecus, and Y. X. Zhang, Reaction
mechanisms in transport theories: a test of the nuclear effective interaction,
Journal of Physics: Conference Series (JPCS), (2012) in press. The proceedings of the
11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, 2012.

Paper IV. V. Baran, B. Frecus, M. Colonna, and M. Di Toro, On the mass depen-
dence of Pygmy Dipole response, Submitted to Romanian Reports in Physics

71


	Introduction
	Collective motions in nuclear systems
	Experimental evidences for the pygmy dipole resonance
	Theoretical approaches to the pygmy dipole resonance

	Pygmy dipole resonance in a schematic model
	Giant dipole resonance in a Harmonic Oscillator Shell Model
	From sum rules to the total dipole cross section
	Pygmy dipole resonance in a Harmonic Oscillator Shell Model

	Transport approach to nuclear dynamics
	Energy density functional for nuclear systems
	Landau-Vlasov kinetic equations
	Isoscalar response
	Isovectorial response


	Vlasov approach to dipole modes in neutron rich nuclei
	The test particle method
	Static properties within Vlasov dynamics
	Pygmy and Giant dipole modes in exotic nuclei

	Conclusions and perspectives

