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Abstract

This thesis encloses quantum chemical calculations performed in the frame-
work of density functional response theory for evaluating electron paramagnetic
resonance (EPR) spin Hamiltonian parameters of various spin-labels in differ-
ent environments. These parameters are the well known electronic g-tensor
and the nitrogen hyperfine coupling constants, which are extensively explored
in this work for various systems. A special attention was devoted to the re-
lationships that form between the structural and spectroscopic properties that
can be accounted for as an environmental influence. Such environmental effects
were addressed either within a fully quantum mechanical formalism, involv-
ing simplified model structures that still capture the physical properties of the
extended system, or by employing a quantum mechanics/molecular mechanics
(QM/MM) approach. The latter implies that the nitroxide spin label is treated
quantum mechanically, while the environment is treated in a classical discrete
manner, with appropriate force fields employed for its description. The state-
of-the art techniques employed in this work allow for an optimum accounting
of the environmental effects that play an important role for the behaviour of
EPR properties of nitroxides spin labels. One achievement presented in this the-
sis includes the first theoretical confirmation of an empirical assumption that
is usually made for inter-molecular distance measurement experiments in de-
oxyribonucleic acid (DNA), involving pulsed electron-electron double resonance
(PELDOR) and site-directed spin labeling (SDSL) techniques. This refers to
the fact that the EPR parameters of the spin-labels are not affected by their
interaction with the nucleobases from which DNA is constituted. Another im-
portant result presented deals with the influence of a supramolecular complex
on the EPR properties of an encapsulated nitroxide spin-label. The enclusion
complex affects the hydrogen bonding topology that forms around the R2NO·
moiety of the nitroxide. This, on the other hand has a major impact on its
structure which further on governs the magnitude of the spectroscopic prop-
erties. The projects and results presented in this thesis offer an example of
successful usage of modern quantum chemistry techniques for the investigation
of EPR parameters of spin-labels in complex systems.
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Chapter 1

Introduction

Magnetic resonance spectroscopy techniques represent important and widely
used tools in the investigation of matter. This field has emerged with the pi-
oneering work of I.I. Rabi et al. [1], who investigated the influence of a static
magnetic field on the interaction of molecular beams with oscillating fields. For
this work, I.I. Rabi was awarded the 1944 Nobel Prize in Physics. The tech-
nique was subsequently extended for use on liquids and solids by E.M. Purcell
et al. [2] and independently by F. Bloch et al. [3]. The Nobel Prize in Physics in
1952 was jointly awarded to F.Bloch and E.M. Purcell for their work. Inspired
by the advances in the newly emerged nuclear magnetic resonance (NMR) field,
E. Zavoisky [4, 5] developed the first successful electron paramagnetic resonance
(EPR) experiment in 1945. Since then, these techniques were subsequently re-
fined and extended, and employed in a wide area of fields, ranging from chem-
istry and biomedical research to solid state physics, to mention a few of many
examples. A common motivation that stands behind these spectroscopies is the
desire to attain microscopic information and physical understanding of mat-
ter. However, extracting information from a NMR or EPR experiment is not
a trivial task. One usually employs the spin Hamiltonian in order to relate ex-
perimental spectra to phenomenologically introduced parameters. Further on,
empirical relationships between these parameters and structural properties are
drawn. At this point, quantum chemistry can be employed to give a theoretical
insight onto these relationships, and broaden the understanding and interpreta-
tion of NMR and EPR measurements. Recently, theoretical evaluations of EPR
parameters (more specifically, the electronic g-tensor and the nitrogen hyperfine
coupling constants) of nitroxide spin-labels [6] have extensively been performed
in gas-phase or in solution [7, 8, 9] but few such studies have addressed the influ-
ence of different environments on the spectroscopic properties. With the advent
of site-directed spin labeling (SDSL) techniques [10, 11, 12] which can employ
nitroxides spin-labels as paramagnetic probes, in order to investigate the struc-
ture and dynamics of various biomolecules (e.g. proteins, lipids, nucleic acids
etc...), theoretical studies aimed at a better understanding of the behaviour of
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CHAPTER 1. INTRODUCTION

these probes in more realistic environments become more demanding. In this
respect, theoretical tools can provide valuable information for experimentalists,
allowing them to design better spin-labels with extended life-time (since nitrox-
ide spin-labels can easily get reduced to EPR silent hydroxylamines in biological
systems [13, 14, 15]) or with increased binding affinities, besides the invaluable
insight gained through a theoretical microscopic investigation of matter. In
this respect, the present thesis represents an approach in which state-of-the art
quantum chemistry techniques are employed to calculate EPR parameters of
spin-labels in complex environments, shedding light onto the relationships that
form between structural data and spectroscopic properties from an ab initio
viewpoint. Moreover, special attention has been devoted to the environment
influence on the EPR parameters, and structure - spectroscopic properties re-
lations were drawn for several nitroxides evidencing the crucial role of the envi-
ronment on the behaviour of the spin label performance. The thesis is organised
as follows: after a short introduction, the basics of electron paramagnetic reso-
nance (also known as electron spin resonance - ESR) experiments are discussed,
and an overview of the spin Hamiltonian is presented. In order to facilitate the
understanding, a simple example (a system containing an unpaired electron in
the presence of a spin one-half nucleus) is given, and discussed in the framework
of the EPR spin Hamiltonian. Then, in the next three chapters the quantum
chemistry framework in which the EPR parameters are theoretically computed
is presented. In chapter three, a brief overview on the theory of electron spin
is given, along with a discussion of the theory from which it naturally emerged,
i.e. the Dirac theory. Since the full Dirac theory manifests several inconve-
niences for quantum chemical calculations (e.g. the coupling between positron
and electron states), a transformation of the four-component Dirac equation to
a two-component form is derived. Then, the Foldy-Wouthuysen transformed
Dirac Hamiltonian is employed in a many-body formalism, with the help of the
Breit two-body interaction term. The resulted Breit-Pauli Hamiltonian is dis-
cussed, in terms of its components that govern the magnetic interactions which
are of interest in EPR spectroscopy. In chapter four an overview of the compu-
tational methods is presented, with a focus on density functional theory (DFT),
which offers a good alternative to the ab-initio methods, and allows the study
of larger systems, especially when coupled in a quantum mechanics/molecular
mechanics (QM/MM) approach. Moreover, an introduction to response the-
ory and QM/MM methods is given. In chapter five, the theoretical evaluation
of electronic g-tensors and hyperfine coupling constants are presented using a
perturbational approach, involving the relevant terms of the Breit-Pauli Hamil-
tonian. In the last chapter a short summary of the papers included in the thesis
is given.
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Chapter 2

Electron paramagnetic
resonance spectroscopy

Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spec-
troscopy represents a technique for studying systems which have at least one
unpaired electron in their composition. The principle behind this technique is
the interaction between the unpaired electron spin with an external magnetic
field. When subjected to an external uniform magnetic field, the absorption
of electromagnetic radiation by molecules with unpaired electrons gives rise to
transitions between energy levels that are degenerate in absence of the field, but
become split in its presence, the splitting being proportional to the field strength
(see Figs. 2.1 and 2.2). The transitions between these levels are evidenced by
subjecting the system to another magnetic field (an oscillating one, and perpen-
dicularly oriented with respect to the uniform field) if a resonance condition is
satisfied. The existence of minimum one unpaired electron is crucial, and since
most stable molecules exist in singlet state (having all their electrons paired),
the applicability of EPR techniques is reduced. This limitation may be viewed
as an advantage, since it allows the study of specific molecules enclosed in oth-
erwise EPR silent materials, provided the life-time of the unpaired electron is
long enough.

With the basics of EPR experiments being outlined, the next step would be
to address the interpretation of such experiments. In this respect, an important
tool which allows relationships between the spectral features and molecular spin
levels to be made, is the spin Hamiltonian concept. This represents a theoreti-
cal model which allows experimental data to be related to phenomenologically
introduced parameters, which can also be subjected to theoretical evaluation.
The spin Hamiltonian summarizes the relevant interactions in terms of these pa-
rameters, an external magnetic field and effective electronic and nuclear spins
operators. The eigenvalues that correspond to this spin Hamiltonian give the
allowed energy levels in an EPR experiment. Usually, for a system containing
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CHAPTER 2. ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

Figure 2.1: Scheme of an EPR experimental setup.

at least one unpaired electron the spin Hamiltonian is defined as [16, 17]:

H =
∑
i

µBBT · g · Si +
∑
iI

STi ·AiI · II +
∑
i 6=j

STi ·Dij · Sj

−
∑
I

γIB
T · (1− σI) · II +

1

2

∑
I 6=J

γIγJITI · (DIJ + KIJ) · IJ , (2.1)

where the summation normal indices, i, j, account for all the unpaired elec-
trons in the system, while the capital indices, I, J , account for all non-zero
nuclear spins present in the system (this summation convention will be used
throughout the whole thesis), µB being the Bohr magneton, and γI the nu-
clear gyromagnetic ratio. The first term in the above equation describes the
electronic Zeeman effect, which governs the interaction between the uniform
external magnetic field, B, and the electron spin, Si, through the electronic
g-tensor, g. The second term describes the hyperfine interaction between elec-
tron spin, Si, and nuclear spin, II , through the hyperfine tensor, AiI . The third
term describes the interaction between unpaired electrons spins, Si,Sj , which
is not dependent on any external field, through the zero-field splitting tensor,
Dij . The fourth term describes the nuclear Zeeman effect, where the nuclear
shielding tensor, σI , appears, and accounts for the magnetic shielding effects of
the surrounding electrons. The last term describes the direct classical dipolar
interactions between nuclei spins II and IJ through the classical nuclear dipolar
spin-spin coupling tensor, DIJ (note the capital indices, not to be confused with
the zero-field splitting tensor), and the indirect couplings of the nuclear dipoles,
mediated by the surrounding electrons, through the reduced indirect nuclear
spin-spin coupling tensor, KIJ .

The above defined spin Hamiltonian is well suited for describing interac-
tions occurring in EPR and nuclear magnetic resonance (NMR - a technique
analogue to EPR but here nuclei are excited instead of electrons) experiments.
As opposed to NMR spectroscopy, where usually the complete spin Hamiltonian
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2.1. THE EPR SPIN HAMILTONIAN

Figure 2.2: Splitting of the energy levels as a function of the external magnetic
field strength for a system with one unpaired electron.

is needed in order to properly describe the spectra, in EPR spectroscopy only
the relevant terms from the spin Hamiltonian can be employed for a successful
description of experimental data. When more than one unpaired electron ex-
ists, the first three terms are usually employed, and in the case where only one
unpaired electron exists, the first two terms are sufficient for a good description
of the spectra. Although useful in the interpretation of experimentally obtained
spectra, the spin Hamiltonian is though incapable in providing a direct relation-
ship between the structure of the system under investigation and the tensorial
parameters, g,A, ..., directly from measured spectra [18]. A way to obtain such
informations is by employing quantum chemistry techniques. In this way, a
direct connection between the structural data and the spectroscopic parameters
can be achieved. However this is not an easy task, since real systems impose
certain difficulties, which mainly relate to the computational cost as well as the
accuracy of the obtained results. Before discussing these aspects, let us consider
an illustrative example where the EPR spin Hamiltonian can be employed to
get an insight on the problem studied.

2.1 The EPR spin Hamiltonian

For a spin one-half system the EPR spin Hamiltonian can be written in the
following form:

HEPR = gisoµBBSz +

Ntotal∑
N=1

ANS · IN , (2.2)
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CHAPTER 2. ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

where the first term from the right hand side represents the electronic Zee-
man interaction, with giso denoting the isotropic electronic g-factor, µB the
Bohr magneton, B, the external, static magnetic field (assumed to be in the
z direction). The second term corresponds to the hyperfine interaction, where
the summation over N accounts for the coupling between the electron spin S
with every nuclei whose spin are denoted with IN . Making use of the creation
and annihilation operators:

S± =
1√
2

(Sx ± iSy) , (2.3a)

I± =
1√
2

(Ix ± iIy) , (2.3b)

the dot product can be expressed as:

S · I = SzIz +
1

2
(S+I− + S−I+) . (2.4)

In order to show the usefulness of the spin Hamiltonian concept in the analy-
sis of EPR measurements, let us now consider the interaction between a system
containing one unpaired electron with a single nucleus whose spin is also one-
half. In the spin basis, |S,mS ; I,mI〉 = |1/2,mS ; 1/2,mI〉 ≡ |mS ,mI〉, the non
vanishing matrix elements of the EPR spin Hamiltonian, 〈m′S ,m′I |HEPR|mS ,mI〉,
can be written:

〈1/2, 1/2|HEPR|1/2, 1/2〉 =
1

2
EZ +

1

4
A , (2.5a)

〈1/2,−1/2|HEPR|1/2,−1/2〉 =
1

2
EZ −

1

4
A , (2.5b)

〈1/2,−1/2|HEPR| − 1/2, 1/2〉 =
1

2
A , (2.5c)

〈−1/2, 1/2|HEPR|1/2,−1/2〉 =
1

2
A , (2.5d)

〈−1/2, 1/2|HEPR| − 1/2, 1/2〉 = −1

2
EZ −

1

4
A , (2.5e)

〈−1/2,−1/2|HEPR| − 1/2,−1/2〉 = −1

2
EZ +

1

4
A , (2.5f)

with the Zeeman energy, EZ = gisoµBB. The two diagonal states, |1〉 =
|1/2, 1, 2〉 and |4〉 = | − 1/2,−1, 2〉 do not couple with any other off-diagonal
state. For the remaining two states a diagonalization of a 2× 2 matrix (see the

four middle terms in Eq. 2.5) is needed. Defining the angle θ =
1

2
tan−1 |A|EZ

, the
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2.1. THE EPR SPIN HAMILTONIAN

Figure 2.3: Magnetic energy levels and allowed transitions for a system with
an unpaired electron and a nucleus with one-half spin.

diagonalization yields the remaining eigenstates:

|2〉 = cos θ|1/2,−1/2〉+ sin θ| − 1/2, 1/2〉 , (2.6a)
|3〉 = −sin θ|1/2,−1/2〉+ cos θ| − 1/2, 1/2〉 , (2.6b)

with the corresponding eigenvalues:

E2 =
1

2

√
E2
Z +A2 − 1

4
A , (2.7a)

E3 = −1

2

√
E2
Z +A2 − 1

4
A . (2.7b)

In the high field limit, gisoµBB � A, as it is usually the case in typical EPR
experiments, the eigenstates |2〉 and |3〉 can be expressed in a much simple
mode, only in terms of single spin functions, with the corresponding energies
written as:

|2〉 ≈ |1/2,−1/2〉 , E2 ≈
1

2
EZ −

1

4
A , (2.8a)

|3〉 ≈ | − 1/2, 1/2〉 , E3 ≈ −
1

2
EZ −

1

4
A , (2.8b)

In Fig. 2.3 an energy level diagram showing the subsequent splitting of
initially degenerate levels due to the Zeeman effect, which are further split due
to the hyperfine interaction (in the high field limit) is presented. The selection
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CHAPTER 2. ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

Figure 2.4: EPR spectrum for a system with an unpaired electron and a nucleus
with one-half spin, showing the magnitude of the isotropic hyperfine coupling
constant as the difference between the two recorded peaks.

rule, ∆mS = ±1, yields the allowed transitions in typical EPR spectroscopy.
In the presence of a spin one-half nucleus only transitions between states with
the same spin projection are observed. This gives the possibility to evaluate de
isotropic hyperfine coupling constant, A, as an energy difference between the
energies that correspond to the two possible transitions. In the high field limit
these can be expressed:

∆E1−3 = E1 − E3 ≈ EZ +
1

2
A , (2.9a)

∆E2−4 = E2 − E4 ≈ EZ −
1

2
A , (2.9b)

and consequently, A, can be evaluated as:

A = ∆E1−3 −∆E2−4 . (2.10)

Moreover, one can estimate the intensities that characterize the possible
transitions. These transitions are triggered by an external electromagnetic field
in the radio frequency range, applied perpendicularly to B ≡ Bz ·ẑ, for example,
along the x axis. The intensities can be then evaluated as:

|〈1|Sx|3〉|2 = |〈2|Sx|4〉|2 = cos2θ , (2.11)

yielding the two transitions intensities equal. A typical EPR spectrum for
systems with a doublet ground state and one nucleus with one-half spin is shown
in Fig. 2.4. It consists of two almost identical peaks split by the magnitude of
the isotropic hyperfine coupling constant. Thus, from this simple example and
the subsequent analysis, one is able to extract important information about the
system studied.
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Chapter 3

The molecular Hamiltonian

In the previous chapter we saw how the energy levels are split when a system
containing at least one unpaired electron is subjected to a uniform magnetic
field. This suggests that elementary particles possess an intrinsic property (the
spin) that makes them interact with the external perturbing field. Since our aim
is the theoretical evaluation of the EPR spin Hamiltonian parameters within an
ab-inito approach, it is necessary to have a quantum mechanical framework in
which the particle’s spin explicitly appears. In electronic structure calculations
the molecular Hamiltonian that appears in the Schrödinger equation, usually
accounts only for the kinetic energies of the constituents (electrons and nuclei 1)
as well as the Coulomb interaction terms, without any reference to the spin of
the particles. The aim of this chapter is to obtain such a molecular Hamiltonian
which will include the particles’ spin as explicit variables.

3.1 The electron spin
In quantum mechanics physical quantities are represented by hermitian (or self-
adjoint) operators. More specifically, for such operators associated to these
physical observables, the following relation holds, A = A† ≡ (A∗)T , and their
expectation values, 〈A〉 = 〈ψ|A|ψ〉 ∈ <, should yield real numbers. More
specifically, the operator that corresponds to the position observable is just a
multiplicative operator, r→ r, the one that corresponds to the classical momen-
tum is related to the gradient operator, p→ −i~∇, while for the total energy of
a system the operator E → i~ ∂

∂t is employed (with ~ being the reduced Planck
constant). Usually, the transition from the classical world to the quantum world
is thus made by ways of analogy. For example, the operator that corresponds
to the angular momentum can be constructed as L = r×p→ −i~r×∇, for the
energy of a free moving particle one has Ek = p2

2m → −
~2

2m∇
2 . However, there

1This is further simplified in the Born-Oppenheimer [19] approximation, where the nuclei
are considered at rest.
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CHAPTER 3. THE MOLECULAR HAMILTONIAN

is no way to make such an analogy with the classical world for the intrinsic an-
gular momentum that is carried by elementary particles. Almost a century ago,
in 1922, Stern and Gerlach [20] have shown that the splitting of a beam of silver
atoms when shot trough an inhomogeneous magnetic field suggested that parti-
cles should possess some intrinsic property like an angular momentum. At that
time, one would have expected no interaction of the 5s1 electron with the exter-
nal magnetic field, since its orbital angular momentum is zero. Few years later,
in 1925 Uhlenbeck and Goudsmit [21, 22] have performed similar Stern-Gerlach
experiments, but with electrons, pointing out that this intrinsic property, which
is not related in any way to the orbital angular momentum, can be thought just
as the magnetic moment that arises from a spinning charged classical object.
In other words, Uhlenbeck and Goudsmit just postulated the existence of the
electron spin, and since it should behave like an angular momentum, one can
write its associated magnetic moment as:

µ =
gµB
~

S , (3.1)

with S being the intrinsic electron angular momentum, or simply put, the
spin operator, g denotes the g-factor - a constant value close to 2 and µB being
the Bohr magneton. However, there was not yet any theoretical model that
described particle’s spin. The Schrödinger equation for a particle of mass m
and charge q moving in an electric field is:

Hψ(r, t) ≡
[
− ~2

2m
∇2 + qΦ(r, t)

]
ψ(r, t) = i~

∂

∂t
ψ(r, t) , (3.2)

with H denoting the Hamiltonian, Φ(r, t) being the scalar electric potential
and ψ(r, t) representing the wave function. The above equation describes the
time evolution of the system, but has no connection with the spin of the moving
particle. Or, as Schrödinger puts it [23]:

"But in what way the electron spin has to be taken into account in the present
theory is yet unknown."

An attempt to make the connection between Schrödinger’s theory and the
electron spin has been subsequently made by Pauli [24] in 1927. The Schrödinger-
Pauli equation now reads:[ 1

2m
(σ · π)2 + qΦ

]
|ψ〉 = i~

∂

∂t
|ψ〉 , (3.3)

with

π → p− qA = −i~∇− qA , (3.4)

being the momentum in an electromagnetic field described by the scalar, Φ,
and vector, A, potentials respectively, and with σ = (σx, σy, σz) being a vector
whose three components are the 2× 2 Pauli matrices:

10



3.1. THE ELECTRON SPIN

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (3.5)

It is worth noting that in Eq. 3.3, |ψ〉 now represents a two-component
spinor wavefunction, or a column vector:

|ψ〉 =

(
ψα
ψβ

)
, (3.6)

as opposed to the Schrödinger equation (see Eq. 3.2) where ψ denotes a
scalar wavefunction. Now, since the electron spin, S, is an angular momentum,
one can write the eigenvalue equation for its square:

S2|s,ms〉 = ~2s(s+ 1)|s,ms〉 , (3.7)

and for the z component:

Sz|s,ms〉 = ~2ms|s,ms〉 . (3.8)

Since electrons have half integer spin, there are only two possible eigen-
states: spin up and spin down, and one can write the matrix elements of Sz as
〈1/2,ms′ |Sz|1/2,ms〉 = ~msδms′ ,ms . In this basis we can express Sz in terms
of the Pauli σz matrix, Sz = ~

2σz. The eigenspinors are column matrices,

χ+ =

(
1
0

)
, χ− =

(
0
1

)
, for spin up, and spin down respectively. The cre-

ation and annihilation operators that act on the state |s,ms〉 are introduced as
follows:

S+|s,ms〉 ≡
1√
2

(Sx + iSy)|s,ms〉 =
~√
2

√
(s−ms)(s+ms + 1)|s,ms + 1〉 ,

(3.9a)

S−|s,ms〉 ≡
1√
2

(Sx − iSy)|s,ms〉 =
~√
2

√
(s+ms)(s−ms + 1)|s,ms − 1〉 ,

(3.9b)

in terms of the first two Pauli matrices, Sx = ~
2σx , Sy = ~

2σy. Consequently,
the total spin operator, S, can be expressed using Pauli matrices as:

S =
~
2
σ . (3.10)

With the help of the identity

(σA) · (σB) = A ·B + iσ · (A×B) , (3.11)

let us explicit the square product (σ · π)2 in Eq. 3.3 :

11



CHAPTER 3. THE MOLECULAR HAMILTONIAN

[
σ(p− qA)

]2
= p2 + (qA)2 − qσpσA− qσAσp

= p2 + (qA)2 − q
[
− i~

(
σ∇(σA) + σAσ∇

)]
= p2 + (qA)2 − q

[
− i~

(
σ(∇σ)A + σσA∇+ σσ(∇A) + σAσ∇

)]
= p2 + (qA)2 − q

[
σpσA + σσAp + σσAp

]
= p2 + (qA)2 − 2qAp− q(σp)(σA)

= π2 − q
(
− i~∇A + iσ(−i~∇×A)

)
= π2 − q~σ ·B , (3.12)

where the magnetic field is expressed in terms of the vector potential (i.e.
B = ∇×A) and the Coulomb gauge is considered (i.e. ∇A = 0). One can now
rewrite the Hamiltonian in Eq. 3.3 :

H =
1

2m
π2 − q~

2m
σB + qΦ , (3.13)

with q = −e for the electron. The second term from the right hand side of the
above equation is the so-called spin-Zeeman term, which governs the interaction
of the electron spin with an external magnetic field. If no such external field
exists, the Hamiltonian will be the same as the one in Eq. 3.2. One might
think that the theoretical framework from which electron’s spin arises naturally
was just found in the shape of the Schrödinger-Pauli equation (see Eq. 3.3).
But this is not entirely the case, since the Pauli matrices were introduced "by
hand", instead of arising naturally from the theory itself.

3.2 The Dirac equation

The emergence of the electron’s spin comes naturally when one accounts for
the principles of special relativity into the framework of quantum mechanics
formalism. The first attempts in this direction, were made by Gordon [25] and
Klein [26] in 1926. Their claim that what is now known as the Klein-Gordon
equation (see. Eq. 3.15) was a relativistic description of the electron is not
correct. Rather than a description of the relativistic electron (spin one-half
particle), a relativistic description of the spinless pion was achieved. By substi-
tuting energy and momentum in the relativistic energy-momentum equation:

E2 = p2c2 + (mc2)2 , (3.14)

c being the speed of light, with their quantum mechanical corresponding
operators, one easily arrives at the Klein-Gordon equation:

12



3.2. THE DIRAC EQUATION

− ~2
∂2

∂t2
ψ =

[
− ~2c2∇2 + (mc2)2

]
ψ = H2ψ . (3.15)

One should note that the presence in the above equation of the second deriva-
tive with respect to time implies a non-conserving probability density (since the
integral of |ψ|2 varies with respect to time), hence, it cannot be interpreted
similarly as the Schrödinger equation for a quantum state. To overcome this
problem, Dirac [27] came with a different approach. He chose the Hamiltonian
in such a way that:

H2
D ≡ (αpc+ βmc2)(αpc+ βmc2) = p2c2 + (mc2)2 , (3.16)

is satisfied, and thus, the Dirac equation would be:

HDψ ≡ (αpc+ βmc2)ψ = i~
∂

∂t
ψ . (3.17)

In the above equations, the 4 × 4 matrices α = (α1, α2, α3) and β appear,
as well as the four-component wave function ψ (implied from the fact that the
α and β are 4× 4 matrices). The α and β matrices have to be chosen so that
their squares are equal to the identity matrix, i.e. α2

i(i=1,2,3) = β2 = I4, and the
following anticommutation relations hold:

{αi, αj} = αiαj + αjαi = 0 , (3.18a)
{αi, β} = αiβ + βαi = 0 , (3.18b)

with i, j = 1, 2, 3. One should note that the α and β matrices should be
independent with respect to position and momentum, since the Dirac equation
describes an electron in isotropic space. The most common representation of
these matrices is the following:

αi =

(
0 σi
σi 0

)
, β =

(
I2 0
0 −I2

)
, (3.19)

with i = 1, 2, 3, and σi being the Pauli 2× 2 matrices. In this way, a direct
connection between the Dirac equation and the particle’s spin arises. It is useful,
for the future presentation, to introduce now the 4× 4 ρi matrices, defined as:

ρ1 =

(
0 I2
I2 0

)
, ρ2 = i

(
0 −I2
I2 0

)
, ρ3 =

(
I2 0
0 −I2

)
, (3.20)

and γ matrices (with i = 1, 2, 3):

γ0 = β , γi = βαi , (3.21)

with the help of which, the Dirac equation can be cast in the highly sym-
metric form:

13



CHAPTER 3. THE MOLECULAR HAMILTONIAN

(−i~γµ∂µ +mc)ψ = 0 . (3.22)

Let us now consider a free electron at rest, Eq. 3.17 now reads:

HDψ = βmc2ψ = Eψ , (3.23)

with the eigenvectors (four-component vector columns or bispinors) ψ+ =(
χ±
0

)
yielding positive energy eigenvalues, E = mc2, and with the eigenvectors

ψ− =

(
0
χ∗±

)
yielding negative energy eigenvalues, E = −mc2 (which, as in the

case of the Klein-Gordon equation, cannot be discarded). Here, the 4 funda-
mental solutions are described in terms of the Pauli two-component spinors de-

noting spin-up, χ+ =

(
1
0

)
, and spin-down, χ− =

(
0
1

)
, positive energy states,

and spin-up, χ∗+ =

(
1
0

)
, and spin-down, χ∗− =

(
0
1

)
, negative energy states.

These negative energy states require a little bit of thinking since one can expect
that an electron in a positive energy state can make a transition into one of the
negative energy states, which clearly would lead to some stability problems. In
this respect, Dirac postulated that all the negative energy levels are occupied
in the vacuum state. Due to the fermionic nature of the electron, the transi-
tion into one of this negative energy state would be forbidden. But an electron
coming from this negative energy sea can make a transition into one positive
energy state, leaving a hole in the sea. One can view this hole in the negative
energy and negatively charged sea as a positive energy positively charged par-
ticle. Thus, the hole in the negative energy sea can be interpreted as a positron
(electron with positive charge). It is worth noting that the positron was experi-
mentally observed by Anderson in 1932. Therefore, the Dirac equation not only
describes the electron, but also its anti-particle, the positron whose solutions
correspond to negative energy eigenvalues. Besides the theoretical prediction
of the electron’s antiparticle, another important aspect arising from the Dirac
equation is that the dynamics of an electron implies a set of three independent
variables, namely, position, r, momentum, p, and the velocity cα. This latter
variable arises when one considers the equation of motion for the position z
component, in the Heisenberg picture:

ż =
i

~
[HD, z] =

i

~
[βmc2 + cαπ, z] =

i

~
cαz[pz, z] = cαz , (3.24)

with the eigenvalues of αz being ±1, a measurement of the vz component
for a moving electron would yield the speed of light, c. One can now write the
equation of motion for the velocity αz:

14



3.2. THE DIRAC EQUATION

α̇z =
i

~
[HD, αz] =

i

~
(HDαz − αzHD)

=
i

~
(HDαz − 2αzHD + αzHD)

=
i

~

(
− 2αzHD + {HD, αz}

)
=
i

~
(−2αzHD + 2cpz) , (3.25)

where use has been made of the commutation relations expressed in Eqs.
3.18. If we now consider the momentum to be constant in time, ṗz = 0, a
second differentiation for αz will yield α̈z = −2 i~ α̇zHD, since ḢD = 0, or,
α̇z(t) = α̇z(0)e−2iHDt/~, α̇z(0) being a constant time-independent value of α̇z.
Consequently, if we consider a stationary state for which E is an eigenvalue of
the Dirac Hamiltonian, HD, from the above equations, one can write:

αz(t) =
i~
2E

α̇z(0)e−
2iEt

~ +
cpz
E

, (3.26)

and thus, for the velocity cα one has:

cα =
i~
2E

cα̇(0)e−
2iEt

~ +
c2p

E
. (3.27)

In the above equation the first term represents a rapid oscillatory motion
which averages out, while the second term represents just the classical velocity.
The first term represents the so-called zitterbewegung motion of the electron.
The intrinsic angular momentum of the electron, or the spin, is intimately con-
nected with this motion, as it can be viewed as the orbital angular momentum
arising from the zitterbewegung, while the magnetic moment of the electron can
be thought of as arising from the current produced by it [28, 29]. As we previ-
ously stated, we showed that the electron spin and magnetic moment beautifully
arise from the Dirac theory, as a consequence of the mixing between special rel-
ativity and quantum mechanics.

Let us now consider an electron in a uniform magnetic field, described by
the vector potential, A, and taking the scalar potential to vanish, i.e. φ = 0,
we can write the Dirac equation in matrix form, in terms of the "positive" (also
known in literature as "upper" or "large") and "negative" ("lower" or "small")
components: (

mc2 cσ · π
cσ · π −mc2

)(
ψ+

ψ−

)
= E

(
ψ+

ψ−

)
, (3.28)

it becomes clear that a mixing between the positive and negative components
will occur. Generally, in quantum chemistry problems one is only concerned
with the positive energy states (i.e. electron states). Fortunately there are
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CHAPTER 3. THE MOLECULAR HAMILTONIAN

ways which can be employed to decouple the upper and lower components, but
unfortunately exact transformations can be made for special cases only, i.e. a
free electron or an electron in a uniform magnetic field with vanishing scalar
potential (as in the above example). Even though, when one deals with non
vanishing electric fields, one can make a series of transformations up to a given
desired order.

3.3 The Foldy–Wouthuysen transformation
One way to transform the four component Dirac equation into a pair of two un-
coupled two component equations is by employing the so-called Foldy-Wouthuysen
transformation [30]. This is achieved by performing a canonical transformation
on the Dirac equation, for which the transformed Hamiltonian becomes free
of odd operators. Then, one can subsequently represent the positive and neg-
ative energy states only by two component wave functions. The term "odd
operator" introduced above represents an operator which connects the "upper"
and "lower" components (or the positive and negative energy states) of the
wave function. An "even operator" on the other hand connects only "upper" –
"upper" or "lower" – "lower" components of the wave function. The simplest
matrix representation of an odd operator can be written:

O =

(
0 a
b 0

)
, (3.29)

while, for an even operator one can write:

E =

(
a 0
0 b

)
. (3.30)

It becomes clear now that the Dirac Hamiltonian appearing in Eq. 3.17
contains odd operators trough the components of the operator α. As previously
stated, there are some cases for which a canonical transformation can be made
completely (i.e. free electron, electron moving in uniform magnetic field with
φ = 0.) or approximately, when electric fields are present. We shall now turn
our attention to the first case, and consider a moving electron in a uniform
magnetic field.

Let S be a Hermitian operator, so that the unitary transformation:

ψ′ = eiSψ , (3.31a)

HDψ = i~
∂

∂t
(e−iSψ′) = i~e−iS

∂

∂t
ψ′ + i~

( ∂
∂t
e−iS

)
ψ′ ,

i~
∂

∂t
ψ′ =

(
eiSHDe

−iS − i~eiS ∂
∂t
e−iS

)
ψ′ = Hψ′ ⇒

H = eiSHDe
−iS − i~eiS ∂

∂t
e−iS , (3.31b)
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3.3. THE FOLDY–WOUTHUYSEN TRANSFORMATION

would yield a Hamiltonian, H, which does not contain any odd operators.
It is worth mentioning that in this representation any operator that in Dirac
theory is A, now becomes A′ = eiSAe−iS . Using the above mentioned unitary
transformation, the Dirac equation, HDψ = i~ ∂

∂tψ, becomes Hψ′ = i~ ∂
∂tψ
′. If

one choses S to be not explicitly depending on time and of the form:

S = − i

2mc
βα · πf(σ · π) , (3.32)

with f being a real function of σ ·π, one can show that for the transformed
Hamiltonian the following relation holds:

H = eiSHDe
−iS = e2iSHD . (3.33)

To prove the above statement let us write the exponential expansions:

HDe
−iS = HD

∞∑
k

(−iS)k

k!
, (3.34a)

eiSHD =

∞∑
k

(iS)k

k!
HD , (3.34b)

and, since S and HD anticommute, {S,HD} = SHD + HDS = 0, one has
HD(−S)k = SKHD, hence H = e2iSHD. Now, with the operator S taking the
form expressed in Eq. 3.32, we can expand the exponential in terms of even
and odd powers [31]:

e2iS =

∞∑
n=0

1

n!

[ 1

mc
βαπf

]n
(3.35)

=

∞∑
k=0

1

(2k)!

[( 1

mc
βαπf

)2]k
+

∞∑
k=0

1

(2k + 1)!

βαπf

mc

[( 1

mc
βαπf

)2]k
.

Keeping in mind the properties of the α and β matrices, let us express the
square of the operator:

( 1

mc
βαπf

)2
=
( f

mc

)2
βαπβαπ (3.36)

= −
( f

mc

)2
β2ρ21σπσπ = −

( f

mc

)2
(σπ)2 ,

with α expressed in terms of the ρ1 matrix, the product becomes βαπ =
βρ1σπ. With the help of Eq. 3.36, we can further write the exponential:
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e2iS =

∞∑
k=0

(−1)k

(2k)!

( f

mc
σπ
)2k

+ βρ1

∞∑
k=0

(−1)k

(2k + 1)!

( f

mc
σπ
)2k+1

(3.37)

= cos
( f

mc
σπ
)

+ βρ1 sin
( f

mc
σπ
)
.

Consequently, we can write the Hamiltonian in the new representation:

H = e2iSHD =
[
cos
( f

mc
σπ
)

+ βρ1 sin
( f

mc
σπ
)]

(βmc2 + cα · π) (3.38)

= (βmc2 + cρ1σ · π)cos(f ′) + βρ1βmc
2sin(f ′) + βρ21cσ · π sin(f ′)

= (βmc2 + cρ1σ · π)cos(f ′)− (mc2ρ1 − cβσ · π)sin(f ′)

= βc
[
mc cos(f ′) + σ · π sin(f ′)

]
+ cρ1

[
σ · π cos(f ′)−mc sin(f ′)

]
,

where we used the notation f ′ = f
mcσ · π, and the fact that ρ1 and σ com-

mute, ρ1 and β anti-commute, and ρ21 = I2. With the transformed Hamiltonian
written in this form, it becomes clear that for it to be even, the second term
from the right hand side should vanish, since ρ1 is the only odd operator in-
volved in the equation. This condition is fulfilled if sin(f ′)

cos(f ′) = σ·π
mc , and thus f

becomes:

f(σ · π) =
mc

σ · π
tan−1

σ · π
mc

. (3.39)

Taking now into account the trigonometric identities:

cos(tan−1x) =
1√

1 + x2
, sin(tan−1x) =

x√
1 + x2

, (3.40)

we have:

cos(f ′) =
mc√

(mc)2 + (σπ)2
, sin(f ′) =

σπ√
(mc)2 + (σπ)2

, (3.41)

and the transformed Hamiltonian, H, becomes:

H = βc
√

(mc)2 + (σπ)2 , (3.42)

providing thus independent equations for the positive and negative energy
components, due to the fact that it is comprised only from even operators.
For the general case, when one deals with the presence of electric fields (as
it is the case in quantum chemistry problems) the Foldy-Wouthuysen (FW)
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transformation can be also employed, but there is no representation which would
yield the Hamiltonian free of odd operators. Still, one can perform successive
FW transformations up to a given desired order in λ = 1

mc2 , in order to reduce
the odd operators that arise up to that order. In the general case, the Dirac
Hamiltonian has the form:

HD = βmc2 + cαπ + qφ ,

HD =
1

λ
β +O + E , (3.43)

where we recall that for an electron we shall consider q = −e, while φ,A
denote the scalar and vector potentials respectively, with the odd operator,
O = cαπ, and the even operator being E = qφ. We can perform a similar
unitary transformation as the one expressed in Eqs. 3.31, and we will expand
the exponentials that arise in an infinite series of commutators, as follows:

eiSHDe
−iS = HD+i[S,HD]+

i

2

[
S, i[S,HD]

]
+
i

3

[
S,
i

2

[
S, i[S,HD]

]]
+... , (3.44)

and if we replace the Dirac Hamiltonian in the above equation with the
operator ∂/∂t we can also write:

eiS
∂

∂t
e−iS = −i∂S

∂t
− i

2

[
S, i

∂S

∂t

]
− i

3

[
S,
i

2

[
S, i

∂S

∂t

]]
− ... . (3.45)

Consequently, we can perform the first transformation of the Hamiltonian:

H ′ = eiSHDe
−iS − i~eiS ∂

∂t
e−iS

=
1

λ
β +O + E + i[S,HD] +

i

2

[
S, i[S,HD]

]
+
i

3

[
S,
i

2

[
S, i[S,HD]

]]
+ ...

− ~Ṡ − i

2
~[S, Ṡ] + ... , (3.46)

and, since the aim is to reduce the odd operator, we use the following op-
erator S = −iλ2βO. Bearing in mind the commutation and anticommutation
relations involving β and αi=1,2,3 matrices, and that even operators commute
while an even and an odd operator anti-commute, let us now evaluate the first
commutator:

i[S,HD] =
λ

2

[
βO, 1

λ
β +O + E

]
= −O + λβOE + λβO2 . (3.47)
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For the second commutator in Eq. 3.46 we have:

i

2

[
S, i[S,HD]

]
=
i

2

[
S,−O + λβOE + λβO2

]
= −λ

2
βO2 − λ2

2
EO2 − λ2

2
βO3 , (3.48)

while for the third and fourth:

i

3

[
S,
i

2

[
S, i[S,HD]

]]
=
λ2

6
O3 +

λ3

6
βEO3 − λ3

6
βO4 , (3.49)

i

4

[
S,
i

3

[
S,
i

2

[
S, i[S,HD]

]]]
=
λ3

24
βO4 +

λ4

24
EO4 +

λ4

24
O5 . (3.50)

The commutators involving time derivatives of S are:

−~Ṡ = i~
λ

2
βȮ , (3.51)

− i
2
~[S, Ṡ] = −i~λ

2

8
[O, Ȯ] . (3.52)

Writing O2E = 1/4[O, [O, E ]] and OE = 1/2[O, E ], the Hamiltonian, H ′,
becomes (note that several λ3 or higher order terms have been discarded):

H ′ = β
(
λ−1 +

λ

2
O2 − λ3

8
O4
)

+

[
E − i~λ

2

8
[O, Ȯ]− λ2

8

[
O, [O, E ]

]]

+

{
λ

2
β[O, E ]− λ2

3
+ i~

λ

2
βȮ

}
= βm′c2 + E ′ +O′ . (3.53)

Now, the new odd operator in the above equation is the one between the
braces, and a subsequent FW transformation can be made in order to reduce
it, H ′′ = eiS

′
(H ′− i~∂/∂t)e−iS′

, making use of the new operator S′ = −iλ2βO
′.

The operation can be performed until the desired order will be achieved. Further
on, with the help of Eq. 3.12, let us evaluate the even operators involved in the
first term of Eq. 3.53 :
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λ

2
O2 =

λ

2
(cρ1σπ)2 =

λ

2
c2ρ21(σπ)2

=
1

2m
(π2 − q~σ ·B) (3.54)

λ3

8
O4 =

λ3

8
(cρ1σπ)4 =

λ3

8
c4(σπ)4

=
1

8m3c2
(σπ)4 . (3.55)

The even operators appearing in the second term of Eq. 3.53:

λ2

8

{[
O, [O, E ]

]
+ i~[O, Ȯ]

}
=
λ2

8

[
O, [O, E ] + i~Ȯ

]
, (3.56)

involve several commutators. The first one can be evaluated as:

[O, E ] = [cαπ, qφ] = −i~cqα∇φ , (3.57)

since the vector, A, and scalar, φ, potentials are even operators, and so,
their commutator vanishes, [A, φ] = 0. Consequently, one can write:

[O, E ] + i~Ȯ = −i~cqα∇φ− i~cqα∂A

∂t
= i~cqα ·E (3.58)

Evaluating the second commutator gives:

[
O, [O, E ] + i~Ȯ

]
=
[
cρ1σ · π, i~cqα ·E

]
= i~c2q

[
ρ1σ · π, ρ1σ ·E

]
= i~c2q

(
ρ1σ · πρ1σ ·E− ρ1σ ·Eρ1σ · π

)
= i~c2q

[
πE + iσ(π ×E)−Eπ − iσ(E× π)

]
= i~c2q

[
− i~∇E + iσ(π ×E)− iσ(E× π)

]
, (3.59)

where use has been made of Eq. 3.11 and the fact that the vector potential,
A, and the electric field, E, are even operators and thus commute. Conse-
quently, one has:

−λ
2

8

[
O, [O, E ] + i~Ȯ

]
= − ~2q

8m2c2
∇E +

~q
8m2c2

σ(π ×E)− ~q
8m2c2

σ(E× π) ,

(3.60)
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and thus, the FW transformed Dirac Hamiltonian becomes:

HFW
D = βmc2 +

1

2m
βπ2 − 1

8m3c2
β(σπ)4

+ qφ− q

2mc2
βσB− ~2q

8m2c2
∇E

+
~q

8m2c2
σ(π ×E)− ~q

8m2c2
σ(E× π) . (3.61)

The first three terms represent the energy at rest, the non relativistic kinetic
energy and the relativistic correction to the kinetic energy respectively, the
fourth and fifth represent the energy of a particle with charge q and spin σ in
an external electromagnetic field, the sixth term represents the so-called Darwin
correction [32], while the last two terms represent the spin-orbit interaction.

3.4 The Breit-Pauli Hamiltonian
So far we have addressed only the one-body problem, but quantum chemistry in
general does not deal with such simple (yet complicated) problems. The fully-
relativistic quantum mechanical 2 description of the electron given by the Dirac
theory can be yet very useful in this respect, although difficult to implement due
to the four-component nature of the bispinors involved. The Foldy-Wouthuysen
transformation provides the necessary decoupling between the positive and neg-
ative energy components of the wave-function, yielding a quasi-relativistic limit
for the Pauli theory, or a non-relativistic limit for the Dirac theory. The draw-
back of the aforementioned transformation relies on the fact that when electric
fields are present (as it is usually the case), the FW transformation can not
be precisely made, but rather up to a given order in λ = (mc2)−1. Up to sec-
ond order, one reaches the Pauli theory. The natural next step would be to
include the single-particle Dirac Hamiltonian (or the FW transformed one) into
a many-body formalism. This is not a trivial task since the Coulomb interac-
tion between the electrons does not propagate instantaneously and retardation
effects should be accounted for, as required by special relativity. There are two
ways in which the two-body problem can be treated, and which can be extended
to a many-body formalism. In principle, the approach proposed by Salpeter and
Bethe [33] can provide more accurate results, but we will focus on the approach
proposed by Breit [34], even though it is of limited accuracy, due to the fact that
it is more convenient for our purposes. A many-body Hamiltonian extension of
the two-body Breit Hamiltonian would read:

H =
∑
i

Hi
D +

1

2

∑
i 6=j

Hij
Breit , (3.62)

2 Actually, the term "fully-relativistic quantum mechanical" might be misleading, since in
the Dirac theory the fields are treated classically rather than quantum mechanically.
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with, Hi
D denoting the Dirac Hamiltonian for particle i, and the potential

term 3 :

Hij
Breit =

1

rij
− 1

2rij

(
αiαj +

(αi · rij)(αj · rij)
r2ij

)
, (3.63)

where the first term represents the Coulomb interaction, while the second
is the two-body Breit operator which accounts for the retardation effects of the
interaction. In this operator, the Dirac α matrices corresponding to electrons i
and j appear. The wave-function corresponding to the Breit Hamiltonian is a
4N -component spinor, with N being the total number of electrons considered in
the system, since each electron in Dirac theory is described by a four component
vector or bispinor, hence the total wave-function is a tensor product involving
N bispinors. Consequently the many-body Dirac-Coulomb-Breit Hamiltonian
(which denotes the many-body extension of the two-body Breit Hamiltonian)
can be written:

HDCB =
∑
i

Hi
D +

1

2

∑
i 6=j

[ 1

rij
− 1

2rij

(
αiαj +

(αi · rij)(αj · rij)
r2ij

)]
. (3.64)

Although the Dirac-Coulomb-Breit Hamiltonian can be in principle em-
ployed to solve problems in quantum chemistry, a practical approach would
be to reduce the four-component spinors involved for each particle in the above
equation into one which involves only two-component spinors. As already men-
tioned, the FW transformation can be employed in this respect. For the single-
particle Dirac Hamiltonian we have already achieved this transformation, up to
second order in λ. The FW transformation of the two-body interaction term
has been accomplished by Chraplyvy [35, 36], Barker and Glover [37], but since
the algebra is more complicated it will not be reproduced here. Consequently,
a FW transformation of the Dirac-Coulomb-Breit Hamiltonian would yield the
so-called Breit-Pauli Hamiltonian:

3 We should make one comment about the formulas appearing in this section. In previous
sections of this Chapter the formulas were expressed in the international system of units
to facilitate the physical understanding of the terms, through the constants that appear.
Moreover, the charge q has not been explicitly replaced with the elementary charge of the
electron, q → −e, since the equations also apply for positively charged fermions. However, we
will renounce to do so further on. Instead, in order to make the formulas look more clear we are
opting for the atomic units system where the reduced Plank’s constant, ~, the electron mass,
me, elementary charge, e, and Coulomb’s constant, 1/4πε0, are all equal to unity. Moreover,
λ = (mc2)−1 will be expressed in terms of the fine structure constant, α = c−1 ≈ 1/137.
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HBP =
∑
i

(
c2 +

1

2
π2
i −

α2

8
π4
i − φi − µi ·B +

α2

2
π2
iµi ·B

+
α2

8
∇Ei +

α2

4
µi · (πi ×Ei −Ei × πi)

)
+
∑
i 6=j

[
1

2rij
− α2

4

(πi · πj
rij

+
(πi · rij)(rij · πj)

r3ij

)
+
α2

2

(µj · (rij × πj)

r3ij
+

2µi · (rij × πi)

r3ij

)
+
α2

2

(r2ijµi · µj − 3(µi · rij)(rij · µj)
r5ij

− 8π

3
δ(rij)µi · µj

)
− α2π

2
δ(rij)

]
, (3.65)

where µi = −2µBSi represents the magnetic moment of electron i associ-
ated with its spin Si. The first summation goes for the FW transformed Dirac
Hamiltonian expressed in Eq. 3.61, while the second summation represents the
FW transformed two-body interaction, and is comprised of several terms: (i) the
Coulomb repulsion between electrons, (ii) the orbit-orbit interaction which ac-
counts for the interaction between the magnetic dipole moments, arising from
the orbital motion of charged particles, (iii) the spin-other orbit interaction
which accounts for the interaction between the spin magnetic moment of one
particle with the orbital moment of another particle, (iv) the spin-spin inter-
action which consists of two terms, the first can be thought of as a classical
dipole-dipole interaction between magnetic moments, the second being a con-
tact interaction, since it vanishes when particle are not at the same position
due to the appearance of the δ-Dirac function, and lastly (v) the relativistic
two-electron Darwin term. Except the first two terms, all the other are written
on separate lines in the above equation. Although we made some simplifica-
tions in order to reach the Breit-Pauli Hamiltonian, with the aim of having a
Hamiltonian suitable for electronic structure calculations, its direct usage in the
field of quantum chemical calculations has several drawbacks, since some terms
of HBP are divergent rendering the Hamiltonian variationally unstable [31, 38].
However, in the framework of perturbation theory, for the evaluation of EPR
spin Hamiltonian parameters several terms of the Breit-Pauli Hamiltonian can
be successfully used. More explicitly, a set of four Hamiltonians can be formed,
which will govern the behaviour of EPR spin Hamiltonian parameters (electronic
g-tensor and hyperfine coupling constants), which represent the subject of this
thesis. These Hamiltonians describe the following interactions: (i) Zeeman, (ii)
spin-orbit, (iii) spin-spin, and (iv) diamagnetic interactions respectively [38].

The Zeeman Hamiltonian is written as:
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HZ =
1

2

∑
i

B · liO −
∑
i

µi ·B−
α2

2

∑
i

∇2
iµi ·B . (3.66)

The first term describes the interaction between the magnetic moment gen-
erated by the orbital motion, represented by the angular momentum operator,
liO, with an external magnetic field, B. The second term describes the interac-
tion between the magnetic moment associated with the electron spin with the
external magnetic field. The third term represents the so-called "mass-velocity"
correction, which accounts for the relativistic correction to the kinetic energy.

The spin-orbit Hamiltonian is written as:

HSO =
α2

4

∑
i

µi · (pi ×Ei −Ei × pi)

− α2

2

∑
iI

ZIµi · liI
r3iI

+
α2

2

∑
i6=j

(µi + 2µj) · lij
r3ij

, (3.67)

where the first term describes the spin-orbit interaction governed by the
external electric field, E, the second term describes the spin-orbit interaction
governed by the magnetic field arising from nuclei, while the third term accounts
for the two-body spin-orbit operator accounting for the interaction between the
i-th electron magnetic moment associated with its spin with the magnetic field
generated by the j-th electron’s motion.

The spin-spin Hamiltonian is written as:

HSS = α2
∑
i 6=j

(r2ijµi · µj − 3(µi · rij)(rij · µj)
r5ij

− 8π

3
δ(rij)µi · µj

)
+ α2

∑
iI

(r2iIµi · µI − 3(µi · riI)(riI · µI)
r5iI

− 8π

3
δ(riI)µi · µI

)
. (3.68)

The first term describes a summation that goes over the dipole-dipole like
interaction between the magnetic moments of electrons i and j and the contact
interaction. The second term describes the same dipole-dipole and Fermi con-
tact interactions, but involve the magnetic moments of electron i and nucleus
I.

The diamagnetic Hamiltonian describes the interaction which has the origin
in the vector potential, A, which is included in the kinetic momentum (see. Eq.
3.4) and is comprised of several terms. One of these, which governs to some
extent the EPR parameters which are under investigation in this thesis (elec-
tronic g-tensors and hyperfine coupling constants) consists of three spin-orbit
Zeeman gauge corrections operators, that correspond to interactions with ex-
ternal electric fields, fields arising from nuclei and other electrons respectively,
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which affect only the electronic g-tensors. The spin-orbit Zeeman gauge correc-
tion Hamiltonian is written as:

HSOGC = −α
2

4

∑
i

(B× riO)(µi ×Ei)

− α2

4

∑
iI

ZI(B× riO)(µi × riI)

r3iI

+
α2

4

∑
i 6=j

(B× riO)(µi + 2µj)× rij
r3ij

. (3.69)

Another diamagnetic interaction which governs to some extent the hyperfine
coupling between electron and nuclei spin, can be described in the following
Hamiltonian:

HA(dia) = −α
2

2

∑
iI

(µI × riI)(µi ×Ei)

r3iI

− α4

2

∑
iIJ

ZJ(µJ × riI)(µi × riJ)

r3iIr
3
iJ

+
α4

2

∑
i 6=j,I

(µI × riI)
[
(µi + 2µj)× rij

]
r3ijr

3
iI

. (3.70)

With the help of these Hamiltonians, in the framework of density functional
response theory (for which a short overview will be given in the next chapter),
one can evaluate the EPR parameters of interest.
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Chapter 4

Electronic structure methods

Traditional ab initio methods based on the Hartree-Fock theory and its descen-
dants rely on the finding of the many-body wave-function of the system. A
variational principle problem is solved within an appropriate trial space once
the Hamiltonian of the system is introduced. A problem arises when one is
interested in realistic systems, because these theories are difficult to be applied
due to the computational cost of post Hartree-Fock methods or the reduced
accuracy inherent in Hartree-Fock theory which poorly accounts for electron
correlation. Therefore, a different approach comes at hand, namely the den-
sity functional theory (DFT). This represents a remarkable break-through in
electronic structure calculations, since it aims at the solving of the many-body
problem within an one-body formalism. This, coupled with the fact that the
theory is exact in principle, represents a remarkable achievement. However, the
drawback of this theory is that it relies on the knowledge of an universal func-
tional which is unknown. As we shall see, approximations for this functional
exist, and they permit the calculation of various physical quantities sufficiently
accurate.

4.1 Density functional theory

One of the ideas behind DFT is to consider the energy of a system as a functional
of the electron density rather than as an eigenvalue of the ground state wave
function, as it is done in traditional methods. Within the Born-Oppenheimer
approximation, traditional ab-initio methods describe the system under inves-
tigation using the time-independent Schrödinger equation, Hψ = Eψ, where E
gives the energy of the system and ψ represents its wave-function, and depends
on the spatial and spin coordinates of electrons (3N + N total variables, assum-
ing N to be the number of electrons in the system). H denotes the Hamiltonian
of the system, and in its most simplistic form it can be expressed as:
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H = −1

2

∑
i

∇2
i +

1

2

∑
i 6=j

1

rij
−
∑
iI

ZI
riI

. (4.1)

The first term denotes the kinetic energy of electrons, the second describes
the Coulomb repulsion between the electrons, while the last term gives the
Coulomb attraction between the nuclei and electrons in the system. By solv-
ing the Schrödinger equation one is able to obtain the wave-function and the
energy of the system, as well as any other properties of interest. However, we
are not interested in this approach, but on a different one, which as already
has been mentioned, relies on the usage of the electron density. The idea to
use the electron density instead of the wave-function in order to gain knowledge
about the system studied is traced back in the early days of quantum mechanics
development in the twenties, especially from the Thomas-Fermi model [39, 40].
Consequently, instead of being interested in finding the many-body wave func-
tion of the system, the new approach proposes that the energy of the system
can be expressed as a functional of the one-electron density:

ρ(r) = N

∫
|ψ(r1 · · · rN , s1 · · · sN )|2ds1 · · · dsNdr1 · · · drN−1 , (4.2)

which gives the probability of finding an electron with arbitrary spin at point
r in space. Although the roots of DFT were set with the Thomas-Fermi model,
the theoretical legitimacy of the theory was achieved with the pioneering work
of Hohenberg and Kohn [41], and subsequently by that of Kohn and Sham [42].
It is stated that the problem of interacting particles within an external statical
potential can be reduced to a non-interacting problem, where the energy is a
functional of the local density. In the non-interacting problem, the particle
move within a local effective potential, which can be expressed as a functional
of the local density. The ground-state density can be obtained variationally
by finding the density which minimises the total energy, this density being the
exact ground-state density. Hohenberg and Kohn prove the existence of a unique
functional of the density which determines exactly the external potential, and
thus the ground-state energy, but gives no recipe on how this functional should
look like. Let us consider the energy as a functional written in terms of the
kinetic, electron-electron interaction and potential parts:

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + VeN [ρ(r)] . (4.3)

The first two are system independent parts, and thus comprise the universal
Hohenberg-Kohn functional, which is usually written as:

F [ρ(r)] = T [ρ(r)] + Vee[ρ(r)] . (4.4)

The last term in Eq. 4.3 is system dependent, and can be written as:
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VeN [ρ(r)] =

∫
ρ(r)v(r)dr , (4.5)

with the external potential v(ri) = −
∑
I
ZI

riI
. It is important to note here

that this external potential, v(r), needs not necessarily be a Coulomb potential.
This external potential is determined by the electron density (within a trivial
additive constant), as the 1st Hohenberg-Kohn theorem states. To prove this
theorem let us consider the electron density, ρ(r), corresponding to the non
degenerate ground state of an arbitrary N -electron system. N is straightfor-
wardly determined by the density, i.e. N =

∫
ρ(r)dr. The density should also

determine the external potential, and hence all the properties. Let us assume
that there are two external potentials, v an v′ which differ by more that a trivial
additive constant, each of them giving the same electron density for the ground
state. Hence, one would have two Hamiltonians, say H and H ′, that would
yield two different wave-functions, ψ and ψ′ which would give the same electron
densities in the ground state. If one takes the second wave-function, ψ′, as a
trial function for the first Hamiltonian, H, one can write:

E0 < 〈ψ′|H|ψ′〉 = 〈ψ′|H ′|ψ′〉+ 〈ψ′|H −H ′|ψ′〉

= E′0 +

∫
ρ(r)

[
v(r)− v′(r)

]
dr , (4.6)

with E0 and E′0 denoting the ground state energies that correspond toH and
H ′ Hamiltonians. Now, if one takes the first wave-function as a trial function
for the second Hamiltonian, one can write:

E′0 < 〈ψ|H ′|ψ〉 = 〈ψ|H|ψ〉+ 〈ψ|H ′ −H|ψ〉

= E0 −
∫
ρ(r)

[
v(r)− v′(r)

]
dr . (4.7)

Adding the above equations we would obtain a contradiction, i.e. E0 +E′0 <
E′0+E0, so our initial assumption that there exist two different external potential
that would yield the same electron density for the ground state is invalid. We
have just proved the 1st Hohenberg-Kohn theorem.

The variational problem implied by the 2nd Hohenberg-Kohn theorem states
that for a trial 1 non-vanishing electron density, ρ′(r) ≥ 0, for which the integral
over coordinate space gives the number of electrons in the system, one can write:

1 We should address some subtle aspect of the Hohenberg-Kohn theorems. These imply
that the density associated with the ground state should be v-representable. This has the
meaning that such a density is one that is essentially connected with an antisymmetric ground-
state wave function that corresponds to a Hamiltonian like the one expressed in Eq. 4.1.
Thus, the first theorem states that there is a one-to-one mapping between the ground state
wave function and a v-representable density. When we consider a trial density in the second
theorem, than this necessarily needs to be v-representable. If it is not (e.g. when one has
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E0 ≤ E[ρ′(r)] =

∫
ρ′(r)v(r)dr + F [ρ′(r)] . (4.8)

Thus, the energy functional for the trial density, E[ρ′(r)], is always larger
than the actual ground state energy of the system, E0. From the 1st Hohenberg-
Kohn theorem we know that any trial density, ρ′, determines its own external
potential, v′, and thus Hamiltonian, H ′, and wave function, ψ′. Taking ψ′ as a
trial function for the problem involving the external potential v, one can write:

〈ψ′|H|ψ′〉 = Ev[ρ
′] =

∫
ρ′(r)v(r)dr + F [ρ′(r)] ≥ Ev[ρ] = 〈ψ|H|ψ〉 , (4.9)

where we put the index v to the energy functional to stress its connection
with the external potential (Ev[ρ] ≡ E[ρ]). Hence, we have just proved the 2nd

Hohenberg-Kohn theorem.
The variational principle (see Eq. 4.8) can be formulated as a stationary

principle [43]:

δ
{
E[ρ(r)]− µ

∫
ρ(r)dr

}
= 0 , (4.10)

which can be rewritten as the Euler-Lagrange equation:

µ =
δE[ρ(r)]

δρ(r)
= v(r) +

δF [ρ(r)]

δρ(r)
, (4.11)

for determination of the Lagrangian multiplier, µ, which has the physi-
cal meaning of chemical potential and is associated with the constraint, N =∫
ρ(r)dr .
However, as previously noted, Hohenberg and Kohn give us no clue onto

how to construct this universal functional, F . From Eq. 4.4 we know that this
functional comprises several parts, the only one which we can express in terms
of the electron density being the Coulomb one:

V Coulombee [ρ(r)] =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ . (4.12)

The kinetic part, as well as the quantum mechanical contributions (which
accounts for exchange and correlation effects) have no known explicit form. To
solve the problem of the kinetic energy functional Kohn and Sham [42] came
with an interesting idea. Rather than trying to search for an explicit density
functional that determines the kinetic energy, one should compute it exactly for

degenerate ground-states), one would face serious problems (see also the discussion in Ref. [43],
p. 54). However, it is shown [44] that the requirement of v-representability should be changed
with a more weaker condition, namely N-representability. This means that the density should
be obtained from some antisymmetric wave function, condition which is satisfied for any
reasonable density.
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a simpler problem - a non interacting system [45]. They proposed the idea to
evaluate this contribution in an orbital basis, as it is usually done in conventional
ab-initio methods. In the last approach the kinetic energy is expressed as:

T = −1

2

N∑
i

ni〈ψi|∇2|ψi〉 , (4.13)

where ψi denotes a spin-orbital, and ni the occupation number of this orbital
(with 0 ≤ ni ≤ 1 as required by Pauli’s principle). In the Kohn-Sham (KS)
approach, the kinetic energy functional is introduced:

Ts[ρ] = −1

2

N∑
i

〈ψi|∇2|ψi〉 , (4.14)

with the electron density given in terms of the KS orbitals, ψi(r, s):

ρ(r) =

N∑
i

∑
s

|ψi(r, s)|2 . (4.15)

It becomes clear that the KS kinetic energy functional is just a special
case of the traditional way in which the kinetic energy is expressed. In this
case, the kinetic energy functional exactly represents the kinetic energy for a
Slater determinant-like wave-function that describesN noninteracting electrons.
Then, in the KS approach, a Hamiltonian of the form is considered:

Hs = −1

2

N∑
i

∇2
i +

N∑
i

vs(r) , (4.16)

which corresponds to a noninteracting (meaning that there is no electron-
electron Coulomb repulsion term) problem, for which the exact ground state
wave-function can be expressed:

Ψs =
1√
N !

det
[
ψ1ψ2 · · ·ψN

]
. (4.17)

Here, ψi are the spin-orbitals that correspond to one-body Hamiltonians:[
− 1

2
∇2 + vs(r)

]
ψi = εiψi . (4.18)

The connection between this non-interacting system and the real system in
which electrons interact can be made by choosing the non-interacting potential,
vs, in such a way that the ground state densities of the non-interacting and real
systems will be the same. With the kinetic energy functional defined as in Eq.
4.14, let us rewrite the universal functional as:

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] . (4.19)
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The first term denotes the kinetic energy functional for the non-interacting
system, the second defines the Coulomb repulsion between the electrons, while
the last represents the exchange-correlation energy functional:

Exc[ρ] = T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ] , (4.20)

which accounts for the difference between the interacting and non-interacting
kinetic energies, as well as the quantum mechanical part of the electron-electron
interaction. Eq. 4.11 becomes:

µ = v(r) +
δJ [ρ]

δρ
+
δExc[ρ]

δρ
+
δTs[ρ]

δρ

= v(r) +

∫
ρ(r′)

|r− r′|
dr′ + vxc(r) +

δTs[ρ]

δρ

≡ veff (r) +
δTs[ρ]

δρ
. (4.21)

For a given effective potential, veff , one is able to obtain the density, ρ(r),
that can be evaluated according to Eq.4.15, by solving N one-body equations
similar to Eq. 4.18 where the non-interacting potential, vs, is replaced with the
effective one, veff 2: [

− 1

2
∇2 + veff (r)

]
ψi = εiψi , (4.22)

which is known as the Kohn-Sham equation. Since veff depends on ρ(r),
the equations must be solved until the self-consistency is reached, by varying
the spin-orbitals, ψi. Usually, one begins with a trial density from which the
effective potential can be constructed: veff (r) = v(r) +

∫ ρ(r′)
|r−r′|dr′ + vxc(r).

Then, a new density can be found following the process described above until
convergence is reached. The total energy is [43]:

E =

N∑
i

〈ψi| −
1

2
∇2 + veff |ψi〉

− 1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr′dr + Exc[ρ]−

∫
vxc(r)ρ(r)dr

= Ts[ρ] +

∫
veff (r)ρ(r)dr

− 1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr′dr + Exc[ρ]−

∫
vxc(r)ρ(r)dr , (4.23)

showing that it depends on the kinetic energy of the non interacting system,
the effective potential, veff , and exchange-correlation functional which is yet

2Actually vs ≡ veff .
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unknown. Indeed, one can show that the above energy corresponds to the one
of the real interacting system:

E = Ts[ρ] +

∫ [
v(r) +

∫
ρ(r′)

|r− r′|
dr′ + vxc(r)

]
(r)ρ(r)dr

− 1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr′dr + Exc[ρ]−

∫
vxc(r)ρ(r)dr

= Ts[ρ] +

∫
v(r)ρ(r)dr + J [ρ] + T [ρ]− Ts[ρ] + Vee[ρ]− J [ρ]

= VeN [ρ] + T [ρ] + Vee[ρ] . (4.24)

This represents a nice way to solve a many-body problem by involving only
one-body equations. In this respect KS theory resembles the Hartree-Fock the-
ory. Whereas the first one is an exact theory provided that the exchange cor-
relation functional, Exc, is known, the latter is an approximate theory since
it doesn’t account for a major part of the electron correlation from the way it
is defined. In order to better account for the electron correlation, the quest
for more accurate methods in the post HF methods manifests in approaches
which include linear combinations, as in configuration interaction (CI) method,
or exponential expansions, as in the coupled cluster (CC) method, of Slater
determinants (to mention a few of the available approaches). On the other
hand, in KS DFT the effort is spent (amongst other directions) onto the finding
of more and more accurate exchange-correlation functionals. Before getting to
this point let us bring into discussion the electron spin. As can easily be seen,
the effective potential has no dependence on spin, making the solutions of the
KS equations doubly degenerate. For a system with even number of electrons
the spin up (α) and spin down (β) electron densities are usually equal, and the
total density is the double of spin up (or spin down) density. For a system with
unpaired number of electrons a slightly different type of energy functional must
be employed:

E[ρα, ρβ ] = Ts[ρα, ρβ ] + J [ρα + ρβ ] + Exc[ρα, ρβ ] +

∫
v(r)

[
ρα(r) + ρβ(r)

]
dr .

(4.25)
The spin up and spin down densities are:

ρα(r) =
∑
i

nαi|ψi(r, α)|2 , ρβ(r) =
∑
i

nβi|ψi(r, β)|2 , (4.26)

with the coefficients, nαi, nβi, being zero or one, denoting the spin-orbital
occupation number. In this case the kinetic energy functional can be written:

Ts[ρα, ρβ ] = −1

2

∑
iσ

〈ψi(r, σ)|∇2|ψi(r, σ)〉 . (4.27)
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In open shell system, there are two possible ways in which the variational
principle can be employed, which differ in the constraints imposed during the
energy functional minimisation procedure. This necessarily leads to different
Kohn-Sham equations, that will still resemble Eq. 4.38. The two approaches
are the so-called unrestricted method, widely used to tackle different problems
in quantum chemistry, and the spin-restricted method, which has become in-
creasingly popular due to the spin contamination problem which is inherent in
the former one [46, 47, 48]. The unrestricted KS approach implies two different
constraints, which set the number of α and β electrons constant trough the
minimization procedure:

∫
ρα(r)dr = Nα , (4.28a)∫
ρβ(r)dr = Nβ , (4.28b)

with the total number of electrons, N = Nα+Nβ . This leads to the following
KS equations which involve the spin orbitals ψi(r, α) and ψi(r, β) respectively:

[
− 1

2
∇2 + vαeff (r)

]
ψi(r, α) =

εαi
nαi

ψi(r, α) , (4.29a)[
− 1

2
∇2 + vβeff (r)

]
ψi(r, β) =

εβi
nβi

ψi(r, β) , (4.29b)

It is obvious that one can write Nα and Nβ equations for the first and
second equation depicted above, that correspond to each spin up and spin down
electron in the system. The effective potentials involved in the above equations
are:

vαeff (r) = v(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δExc[ρα, ρβ ]

δρα
, (4.30a)

vβeff (r) = v(r) +

∫
ρ(r′)

|r− r′|
dr′ +

δExc[ρα, ρβ ]

δρβ
, (4.30b)

where ρ(r′) = ρα(r′) + ρβ(r′).
The spin restricted method implies an additional constraint during the varia-

tional procedure, beside the constraints implied by Eq. 4.28, that is, the spatial
part of alpha and beta spin orbitals should remain the same. Considering a
molecule with Nd doubly occupied orbitals (half alpha and half beta spin),
and Ns singly occupied ones (with alpha spin), the KS equations for the spin
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restricted method become:

[
− 1

2
∇2 + vdeff (r)

]
ψk(r) =

Nd+Ns∑
i=1

εkiψi(r) , k = 1, 2, · · ·Nd , (4.31a)

[
− 1

2
∇2 + vseff (r)

]
ψi(r) =

Nd+Ns∑
i=1

εkiψi(r) , k = 1, 2, · · ·Ns . (4.31b)

The effective potentials involved in the above equations are:

vdeff (r) = v(r) +

∫
ρ(r′)

|r− r′|
dr′ +

1

2

δExc[ρα, ρβ ]

δρα
(4.32a)

+
1

2

δExc[ρα, ρβ ]

δρβ
, (4.32b)

vseff (r) = v(r) +

∫
ρ(r′)

|r− r′|
dr′ +

1

2

δExc[ρα, ρβ ]

δρα
, (4.32c)

where by ρ we denote the sum between the alpha, ρα, and beta, ρα, densities,
which are:

ρα(r) =

Nd∑
i=1

|ψi(r)|2 +

Ns∑
i=1

|ψi(r)|2 , (4.33a)

ρβ(r) =

Nd∑
i=1

|ψi(r)|2 . (4.33b)

So far we have discussed the general ideas behind DFT, the KS formalism
with the two different approaches (unrestricted vs. spin-restricted one). As al-
ready mentioned, the many-body problem is elegantly solved within an one-body
formalism. Exactly! But this is far from true, since the exact solution, in princi-
ple, relies on the knowledge of the exact Hohenberg-Kohn universal functional,
F , that depends on the exchange-correlation term, Exc, which captures the dif-
ference between the kinetic energy of the real system and the non-interacting
one, plus all the quantum mechanical bi-electronic interactions which are not
accounted for in the Coulomb repulsion functional, J . And with all the effort
that has been put to develop better and better exchange-correlation functionals,
the exact universal functional has not yet been found, and most probably will
never be. Moreover, since the only unknown part is the exchange-correlation
term, the quality of the results depends on the quality of the approximations
made for Exc. The development of exchange-correlation functional which has
been made so far can be classified into several major directions.

The most simple type of functional is represented by the local density ap-
proximation (LDA) functional. These functionals depend only on the electron
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density, which may sound a little strange, since every functional should depend
on the electron density. This aspect will be clarified further on. Although sev-
eral functionals of these type have been developed, the combination of Dirac
exchange [49] (which, in the Thomas-Fermi model represents an approximation
of the exchange interaction with a density dependent functional of the form
Cρ4/3) with the Vosko-Wilk-Nussair [50] correlation functional stands now as
the standard LDA exchange-correlation functional. The main reason for this
association is that this exchange-correlation functional provides the most ac-
curate results from the family of LDA functionals. An extension of the LDA
functionals to spin-polarized system is represented by the local-spin-density ap-
proximation (LSDA) functionals. The general expression for these functionals
can be expressed as:

ELDAxc [ρ(r)] =

∫
f(ρ(r))dr , (4.34a)

ELSDAxc [ρα(r), ρβ(r)] =

∫
f(ρα, ρβ)dr . (4.34b)

The next type of functionals is represented by the generalized gradient ap-
proximation (GGA) family of functionals. As the name suggests, these function-
als not only have a dependence on the electron density but also on the gradients,
∇ρ(r), in order to better account for the bonding regions in molecules ( the de-
scription of which represents the main drawback of the LDA functionals), where
high variations of the density are expected:

EGGAxc [ρα, ρβ ] =

∫
f(ρα,∇ρα; ρβ ,∇ρβ)dr . (4.35)

The first attempts in this direction (see Sham [51] and Herman [52]) were
rather unsuccessful, but significant improvements have been made with the ap-
pearance of the exchange functional proposed by Becke [53] and the correlation
functional proposed by Lee, Yang and Parr [54]. Coupled together, these func-
tional form the well known BLYP exchange-correlation functional. Another
successful exchange-correlation functional from the GGA family is the one pro-
posed by Perdew, Burke and Ernzerhof [55].

Another type of functionals are the meta-GGA ones, which include also a
dependence on the divergence of the electron density gradients:

Em−GGAxc [ρα, ρβ ] =

∫
f(ρα,∇ρα,∇2ρα; ρβ ,∇ρβ ,∇2ρβ)dr . (4.36)

Another important class is represented by the hybrid functionals type, which
includes a fraction of the exact Hartree-Fock exchange, with Becke [53] and
LDA exchange contributions to the exchange functional [56]. One of the most
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successful functional of this type is the B3LYP one, which couple the former
exchange functional with the correlation functional of Lee, Yang and Parr and
that of Vosko, Wilk and Nusair:

EB3LY P
xc = axcE

Dirac
x + (1− axc)EHFx + axE

B
x + EVWN

c + acE
LY P
c . (4.37)

4.2 Response theory
Since we are interested in computing molecular properties of systems, a method
for computing electronic g-tensors and hyperfine coupling constants in the den-
sity functional theory framework is needed. One can employ the response ap-
proach which is based on a perturbative treatment of the time-dependent Kohn-
Sham equations:

fKS(r, t)ψi(r, t) ≡
[
− 1

2
∇2 + veff (r, t)

]
ψi(r, t) = i

∂ψi(r, t)

∂t
, (4.38)

which assumes that a small time-dependent perturbation is turned on when
the system is in its ground state. The relevant terms from the Breit-Pauli
Hamiltonian (see. Eq. 3.65) which give a contribution to the EPR properties
of interest (electronic g-tensors and hyperfine constants) are considered as such
perturbations.

The behavior of a given system to an excitation determined by an operator,
G, is characterized by the response function. The Hamiltonian, Hint, that de-
scribes the interaction between the system and an external field which oscillates
in time with frequency ω, is given by [57]:

Hint = λ
(
G† e(ε−iω)t +G e(ε+iω)t

)
, (4.39)

where the coupling strength is controlled by λ, and the exponential e ε t

(with ε > 0 sufficiently small) ensures that at t → −∞ the system is in its
ground state, |0〉, and is described by the unperturbed Hamiltonian, H. The
time dependence of the perturbed system is given by the Schrödinger equation:

(H +Hint)|0̃〉 = i
∂

∂t
|0̃〉 , (4.40)

where |0̃〉 represents the N -body wave-function of the system, while the
unperturbed Hamiltonian, H, has a set of eigenstates |n〉 defined from the
equation:

H |n〉 = En |n〉 , (4.41)

with En denoting the corresponding eigenvalues. The average value of an
arbitrary operator, F , can be expressed:
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〈0̃|F |0̃〉 = 〈0|F |0〉+ F+ e−iωt eεt + F−eiωt eεt . (4.42)

Assuming that the interaction is sufficiently weak, the system response to
the external field is determined by the linear response function:

〈〈F ;G〉〉ω = lim
λ→0

F+

λ
. (4.43)

Let us consider solutions of the following form:

|0̃〉 =
∑
n

an(t)e−iEnt|n〉 , (4.44)

with the boundary condition, an(−∞) = 1 if n = 0 and an(−∞) = 0 if
n 6= 0. Making use of the usual techniques of perturbation theory and retaining
only the terms in λ in first order, we get:

an(t) = λ

[
〈n|G†|0〉

ω − ωn0 + iε
exp[(−iω + iωn0 + ε)t]

− 〈n|G†|0〉
ω − ωn0 + iε

exp[(−iω + iωn0 + ε)t]

]
, (4.45)

where ωn0 = En − E0 is the excitation energy. At first order in λ, Eq. 4.42
can be cast in the form:

〈0̃|F |0̃〉 = 〈0|F |0〉+
∑
n

[
〈0|F |n〉an(t)e−iωn0t + 〈n|F |0〉a†n(t)eiωn0t

]
. (4.46)

Substituting the expression of the coefficients an(t) into the above equation,
by separating the coefficients of the exponential exp(−iωt) from those of the
exponential exp(iωt) the linear response function (see Eq. 4.43) can be written:

〈〈F ;G〉〉ω =
∑
n

[
〈0|F |n〉〈n|G†|0〉
ω − ωn0 + iε

− 〈0|G
†|n〉〈n|F |0〉

ω + ωn0 + iε

]
,

where we made use of the following relation:

〈0|G|n〉∗ = 〈n|G†|0〉 . (4.47)

In Eq. 4.47 the poles of the response function, 〈〈F ;G〉〉ω, represent the
excitation energies, while the matrix elements between the ground and excited
states are determined by the residues in the poles of 〈〈F ;G〉〉ω. Therefore, the
knowledge of the response function gives knowledge of both the poles and the
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residues in the poles of 〈〈F ;G〉〉ω. Considering now F to be hermitian and equal
to G, the response function can be written in a simplified form:

〈〈F ;F 〉〉ω = 2
∑
n

ωn0

∣∣〈n|F |0〉∣∣2
(ω + iε)2 − ω2

n0

. (4.48)

In Kohn-Sham DFT response formalism, the time evolution of the KS de-
terminant can be more conveniently expressed by an exponential expansion:

|0̃〉 = exp[−i k(t)]|0〉 , (4.49)

where the anti-Hermitian operator k(t) has the expression:

k(t) =
∑
rsσ

krs(t)E
σ
rs , (4.50)

in terms of the so-called orbital rotations krs(t), with the operator Eσrs ≡
a†rσasσ expressed in terms of creation and annihilation operators. In this repre-
sentation the alpha and beta spin densities have the form:

ρσ(r, t) = 〈0̃|ρσ(r)|0̃〉 = 〈0|eik(t)ρσ(r)e−ik(t)|0〉 , (4.51)

where the spin density, ρσ(r), can be expressed in second quantization for-
malism as:

ρσ(r) = Ψ†σ(r)Ψσ(r) =
∑
pq

ϕ∗p(r)ϕq(r)Eσpq , (4.52)

in terms of the fermion field operator Ψσ(r) =
∑
i ϕi(r)aiσ. One can employ

the Ehrenfest theorem [58] and show that the linear response function for an
arbitrary operator A can be written (recall Eqs. 4.39 and 4.40):

〈〈A;Hint〉〉ω = 〈0|[kω, A]|0〉 , (4.53)

where the right hand side of the equation contains the commutator involving
operator A and the Fourier transformed operator k(ω) =

∫
k(t)eiωtdt.

4.3 Solvent and environment models
The main purpose of this thesis is to study the EPR properties of various ni-
troxides in complex environments. The environment plays an important role
due to the interaction between the probe and the molecules surrounding it.
Similarly as the electronic g-tensor changes when going from the free electron
to a radical with an unpaired electron, changes in the g-tensor also occur when
going from the radical to the radical in solution, or enclosed into a molecular
cage, protein pocket etc.. To be able to study such changes in the spectroscopic
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properties one needs a proper way to describe the environment. In some cases
it is possible to treat the environment and the probe using quantum mechan-
ical approaches, making use of simplifying models which include at maximum
around a hundred atoms. In most cases one cannot find a satisfactory model
which would capture the influence of the environment without significant loss in
the accuracy of its description due to the simplification. When such approxima-
tive models cannot be found, one needs to treat the environment using different
approaches. It is obvious that in such cases a quantum mechanical description
of the medium is out of the question, due to the size of the system and the
computational cost. Therefore one may treat the environment using simplified
methods if a proper description of the interactions between it and the probe
(which is treated quantum mechanically) is achieved. There are two ways in
which one can treat the environment: (i) considering it as a continuum medium,
and (ii) using a discrete particle approach. In the first method the environment
is considered a homogeneous dielectric continuum medium which interacts with
the probe charge distribution by generating a reaction field, which in turn re-
acts with the probe changing its charge distribution, the scenario repeating
itself until self-consistency is reached. In the second method, the environment
is treated using explicit molecules for which classical electric charges, dipole mo-
ments, polarizabilities etc. are usually assigned trough a force-field, which has
different energy terms for bonded and non-bonded interactions. The bonded
interactions are described by stretching, bending or torsion terms, while the
non-bonded ones include the electrostatic and van der Waals interactions. The
sampling of the probe-environment configurational space is usually performed
by molecular dynamics (MD) simulations, which allows the determination of the
trajectories resulted by integration of the equations of motion, performed using
Newtonian, Lagrangian or Hamiltonian formalisms. The first method can be
employed without significant loss in accuracy to treat only solvents. For other
environments (e.g. like inclusion complexes) one necessarily needs to employ the
second approach. Consequently, in such an approach, the quantum mechanical
treatment of the probe is combined with the classical treatment of the environ-
ment, in which a force field is considered to represent the interaction. Usually,
the total Hamiltonian of the system comprised from the quantum mechanical
(QM) region and the molecular mechanics (MM) one is written:

Htotal = HMM +HQM +HQM/MM , (4.54)

where the first term describes the Hamiltonian of the classical region (intra-
/inter-molecular interactions in/between the molecules in the MM region which
account for the well known stretching, bending, torsion, van der Walls and
electrostatic interactions, as well as the coupling between them), the second one
describes the QM region, while the last term describes the interaction between
the two systems.

The accuracy of the QM/MM method is given by the accuracy of the three
Hamiltonians described above. Several studies aimed towards the modeling of
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EPR parameters of spin-labels in solution were recently carried out using various
QM/MM approaches. Nevertheless, the description of the interaction between
the QM and MM regions in terms of point charges that interact with the density
of the QM system, [59] or by an approximate interaction between a fitted mul-
tipole expansion, determined from the electron density of the QM region, with
an expansion of multipoles in the MM region [9] are rather rudimentary. To
overcome the drawbacks of previous descriptions, we shall employ the so-called
integrated approach developed by Barone et al. [60, 61], taking into account a
more advanced treatment of the interaction between the QM and MM regions,
using the general DFT/MM polarizable embedding response formalism, which
is suitable for computing spectroscopic properties of molecular systems, in terms
of linear, quadratic and cubic response functions and their residues [62]. The
first step of this approach implies carrying out a molecular dynamics simulation
at ambient temperature. The second step consists of extracting a set of uncorre-
lated snapshots from the MD trajectory generated at the previous step, in order
to compute instantaneous spectroscopic properties. For the second step of this
approach, in second quantization Kohn-Sham formalism the terms appearing in
Eq. 4.54 can be expressed. For HQM one can write:

HQM =
∑
rs

frsErs =
∑
rs

(hrs + jrs + vxcrs )Ers , (4.55)

where the singlet excitation operator Ers = a†r,αas,α + a†r,βas,β is expressed
in terms of the creation and annihilation operators, hrs accounts for the ki-
netic energy and nuclear attraction operators, jrs for the Coulomb repulsion
between the electrons, while the last term accounts for the exchange correlation
potential, vxcrs . The coupling Hamiltonian, HQM/MM , includes electrostatic and
polarization interactions between the QM and MM regions, and can be written
as [62]:

HQM/MM =
∑
pq

∑
s

Ms,pqEpq −
∑
pq

∑
a

µinda tapqEpq . (4.56)

The first term accounts for the electrostatic embedding potential introduced
as a set of localized multipole moments, Ms,pq, while the second term describes
the polarization of the environment by the electron density, with µinda denoting
the induced dipole moments, while tapq denotes the interaction tensors which
are defined as tapq = ∇a 1

|rq−rp| .
The coupling between the MM and QM regions can be accounted using differ-

ent levels of approximations. The most basic approach would be to describe the
MMmolecules in terms of a set of point charges located on the atoms from which
the molecules are comprised, these charges being provided by the TIP3P [63]
force field, which also implicitly accounts for the media polarization effects. An
advanced approach would be to explicitly include polarization/induction inter-
actions between the QM and MM regions. This can be achieved by including,
besides the point charges assigned to every atom in the MM molecules, isotropic
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polarizabilities according to the Ahlström force field [64] to specific atoms in
the MM molecules. The natural next step, in order to have a better approxi-
mation of the MM region, would be to consider explicit polarizability tensors
distributed over all atoms in the MM molecules. Further improvements on the
MM region description would be achieved by assigning dipole and quadrupole
moments to every atom in the MM molecules, besides the point charges and the
explicit polarizability tensors, and to the midpoints of the bonds. For an even
better description of the electrostatic potential of the MM region, distributed
octopoles can also be accounted for every atom as well as on the midpoints of
the bonds. For a schematic overview of the force fields employed to describe the
MM region one can refer to Fig. 1 from Ref. [65] and Table 1 from Ref. [66]. The
force fields employed in this work are generated using the LoProp [67] proce-
dure, and are usually evaluated separately for each snapshot resulting from the
MD trajectory. In this way, a proper accounting for the molecular distortions
of the environment is achieved.
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Chapter 5

Evaluation of EPR
parameters

5.1 Electronic g-tensors

The Zeeman term in the spin Hamiltonian:

HZ = µBSgB , (5.1)

governs the interaction between the unpaired electron spin, S, and the exter-
nal magnetic field, B, trough the electronic g-tensor, g, µB denoting the Bohr
magneton. The electronic g-tensor is comprised of two contributions, the first
arising from the free electron g-factor, ge = 2.002319..., the second accounting
for the interaction between the unpaired electron spin and its local environment,
giving a valuable insight into the properties of the system. The deviation of the
free electron g-factor from the value predicted by Dirac theory (which is exactly
2) comes from the neglect of the quantum electrodynamics (or radiative) cor-
rections. The leading order radiative correction has been firstly computed by
Schwinger [68], in terms of the fine structure constant, α, as:

ge
2

= 1 +
α

2π
= 1.001161 . (5.2)

This value of the free electron g-factor is simply taken for granted in quantum
chemical calculations. Deviations from this value can give valuable information
about the system studied (since the local environment around the unpaired
electron can be linked to the magnitude of the g-tensor shift), and therefore it
is convenient to separate the free electron g-factor from the electronic g-tensor,
g, as:

g = geI3 + ∆g . (5.3)
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Moreover, it is important to note that the diagonal elements of the g-tensor
shift (second term in the above equation) account for the anisotropy of the
studied system, which can be probed in EPR experiments of cooled solutions
or crystals. In EPR experiments performed in solution at room temperature,
due to the random thermal motion of the paramagnetic probe it is convenient
to define the isotropic g-tensor shift as:

∆giso =
∆gxx + ∆gyy + ∆gzz

3
. (5.4)

A theoretical evaluation of the electronic g-tensor can be made, in accordance
with Eq. 5.1, as a second derivative of the energy with respect to the electronic
spin and external magnetic field:

g =
1

µB

∂2E

∂B∂S

∣∣∣∣
B=0,S=0

. (5.5)

The usual approach is to calculate the ground state wave function, |0〉, for
an isolated system, while all relevant terms of the Breit-Pauli Hamiltonian that
have a contribution to the g-tensor can be considered as perturbation operators.
Up to second order in the fine structure constant, α, the g-tensor shift can be
written as:

∆g = ∆gRMC + ∆gGC + ∆gSO , (5.6)

where the first term represents the so-called "mass-velocity" correction, the
second term represents the gauge correction contribution while the third denotes
the spin-orbit corrections. The first two terms are evaluated just as the expec-
tation value of the corresponding terms from the Breit-Pauli Hamiltonian on
the unperturbed ground state wave function, |0〉. For the mass-velocity g-tensor
shift one has:

∆gRMC =
1

µB

∂2

∂B∂S
〈0|HRMC |0〉

∣∣∣∣
B=0,S=0

, (5.7)

where HRMC represents the relativistic mass correction term from the Zee-
man Hamiltonian (see Eq. 3.66):

HRMC = −α
2

2

∑
i

∇2
iµi ·B . (5.8)

For the gauge correction g-tensor shift one can write:

∆gGC =
1

µB

∂2

∂B∂S
〈0|HGC |0〉

∣∣∣∣
B=0,S=0

. (5.9)

Here, HGC denotes the last terms in Eq. 3.69
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HGC = −α
2

4

∑
iI

ZI(B× riO)(µi × riI)

r3iI
+
α2

4

∑
i6=j

(B× riO)(µi + 2µj)× rij
r3ij

.

(5.10)
For the evaluation of the spin-orbit contribution to the g-tensor shift, in

addition to knowing the ground state of the system, |0〉, the knowledge of the
excited states, |n〉, is also needed, since for this contribution second order per-
turbation theory should be employed. On can write the spin-orbit g-tensor shift
as:

∆gSO =
1

µB

∂2

∂B∂S
〈〈HSO;HOZ〉〉0

∣∣∣∣
B=0,S=0

, (5.11)

where use has been made of the linear response function:

〈〈HSO;HOZ〉〉0 =
∑
n 6=0

〈0|HSO|n〉〈n|HOZ |0〉+ 〈0|HOZ |n〉〈n|HSO|0〉
E0 − En

. (5.12)

In the above equations the Hamiltonian, HSO denotes the last two sums
that appear in the spin-orbit interaction Hamiltonian in Eq. 3.67 :

HSO = −α
2

2

∑
iI

ZIµi · liI
r3iI

+
α2

2

∑
i 6=j

(µi + 2µj) · lij
r3ij

, (5.13)

while the orbital Zeeman Hamiltonian, HOZ , is given by the first term in
the Zeeman Hamiltonian in Eq. 3.66 :

HOZ =
1

2

∑
i

B · liO . (5.14)

However, when calculating the spin-orbit contribution to the g-tensor shift,
one should pay attention especially when dealing with the two-electron opera-
tors which are involved in the second term of Eq. 5.13. Attention is required
also for the gauge correction contribution, since the second term in the HGC

Hamiltonian expressed in Eq. 5.10 involves also two-electron operators. How-
ever, in this case the two-electron spin-orbit gauge correction is neglected since
it gives a negligible small contribution to the total g-tensor shift. Since density
functional theory is, in essence, a one-electron theory, the two-electron opera-
tors are usually substituted either by an effective single-particle operator, either
by a full two-body spin-orbit operator which is evaluated using the Kohn-Sham
orbitals. Among the first options, one can mention the scaled one-electron spin-
orbit (SC-SO) method or the atomic mean field spin-orbit (AMFI) operator [69].
Moreover, as pointed out by Kaupp et al. one needs to properly account for the
spin contamination issues that arise in unrestricted Kohn-Sham approaches [70].
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In this respect, the restricted-unrestricted Kohn-Sham formalism developed by
Rinkevicius et al. [71] can be employed, as well as the extension in which solvent
effects are accounted for using a molecular mechanics approach [72].

5.2 Hyperfine coupling constants
The hyperfine term in the spin Hamiltonian:

Hhyperfine = SAIN , (5.15)

governs the interaction between the unpaired electron spin, S, and the nu-
clear spin, IN , trough the hyperfine coupling tensor, A (not to be confused
with the vector potential for which the same notation is used). If nuclei with
spin IN 6= 0 are present in the near surroundings of the unpaired electron of a
molecule, further splittings of the spectral lines appear in an EPR experiment,
thus, by measuring the hyperfine coupling tensor one gains valuable insight into
the local environment of the unpaired electron. A theoretical evaluation of the
hyperfine tensor can be made, in accordance with Eq. 5.15, (similar as with the
electronic g-tensor case) as a second derivative of the energy with respect to the
electronic and nuclear spins:

AN =
∂2E

∂S∂IN

∣∣∣∣
S=0,IN=0

. (5.16)

Up to second order in the fine structure constant, α, one can evaluate the
hyperfine coupling tensor, AN , as expectation values of the corresponding terms
from the Breit-Pauli Hamiltonian on the unperturbed ground state wave func-
tion, |0〉. Employing the spin-dipole operator one has:

ASD
N =

∂2

∂S∂IN
〈0|HSD|0〉

∣∣∣∣
S=0,IN=0

, (5.17)

while for the Fermi-contact operator one can write:

AFC
N =

∂2

∂S∂IN
〈0|HFC |0〉

∣∣∣∣
S=0,IN=0

. (5.18)

Here, the spin-dipole and Fermi-contact operators are the first and the sec-
ond terms that arise in the second sum of the spin-spin Hamiltonian (see. Eq.
3.68). More specifically:

HSD = α2
∑
iI

(r2iIµi · µI − 3(µi · riI)(riI · µI)
r5iI

)
, (5.19)

HFC = α2
∑
iI

(
− 8π

3
δ(riI)µi · µI

)
. (5.20)
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The total hyperfine coupling tensor can be expressed as a sum between the
two contributions:

AN = ASD
N + AFC

N , (5.21)

where the classical-like dipole-dipole interaction between the magnetic mo-
ments that correspond to the electron and nucleus respectively is described
through the symmetric traceless tensor ASD

N , while the Fermi contact interac-
tion between the same entities is described through the diagonal tensor AFC

N .
In EPR experiments performed in solution at room temperature, due to the
randomness that characterizes the thermal motion and the orientation of the
paramagnetic spins, the spin-dipole contribution simply averages out. Thus,
the only contribution to the total hyperfine coupling that remains is the Fermi
contact one. Consequently, one can write:

AisoN =
1

3
Tr(AN ) . (5.22)

Although the expressions leading to the hyperfine coupling constant are
rather simple, two important aspects related to the evaluation of the property
within the density functional theory (DFT) framework should be noted: (i) one
need an accurate description of the spin polarization effects, especially in the
vicinity of the nuclei whose spin, IN 6= 0, and (ii) one needs to properly account
for the electron correlation. As pointed out by Neese [18], DFT methods which
are based on the unrestricted Kohn-Sham formalism are much more suitable
for treating large systems when compared with ab initio methods. However,
unrestricted Kohn-Sham approaches suffer from the spin contamination prob-
lem, and a way to overcome this is to employ a spin-restricted Kohn-Sham
formalism. In turn, this approach has the drawback of not properly accounting
for the spin polarization effects. The solution to these problems comes with
the Kohn-Sham restricted-unrestricted approach developed by Rinkevicius et
al. [73] and the subsequent extension which can account for solvent effects in a
discrete manner [66].
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Chapter 6

Summary and outlook

This thesis is devoted to the calculation of EPR spin Hamiltonian parameters
of various spin labels in different environments, with the help of state-of-the-art
quantum chemical techniques, and collects all the results that are connected
with this field, obtained during the author’s PhD studies, between Nov 2010 -
Mar 2013. In these projects, in the framework of density functional response
theory, electronic g-tensors and hyperfine coupling constants were calculated
using the relevant Breit-Pauli Hamiltonian terms as perturbation operators.

In paper I, the effect of embedding a spin label into a double-stranded de-
oxyribonucleic acid (DNA) on the EPR parameters of the spin-label is inves-
tigated. The proposed approach consists of building a model structure that
would capture the important embedding effects without being too large, so that
calculation would become prohibitive due to the computational cost. Such a
model consists of the rigid spin label Ç hydrogen bonded to guanine (see Fig.
6.1) stacked between two guanine-cytosine units. It is found that both stacking
and hydrogen bonding effects have an almost negligible impact on the EPR
parameters of the rigid spin label. This represents an important result since
the distance measurements experiments involving this spin label embedded into
DNA are based on the empirical assumption that the EPR spin Hamiltonian
parameters of the spin label are unaffected by the environment in which it is
embedded.

Papers II and III are the result of an extensive study in which the encapsula-
tion influence on the EPR spin Hamiltonian parameters of a spin label enclosed
in a hydrophobic cage is addressed (see Fig. 6.2. Two different approaches are
presented. In paper II a systematic study of the dependence of the spectroscopic
parameters on the hydrogen bonding topologies that occur upon encapsulation
is performed. The main differences that arise between the EPR parameters of
solvated free nitroxides and solvated nitroxides enclosed in hydrophobic cavi-
ties are mainly attributed to the hydrogen bonding topology that is changed in
upon encapsulation when compared to the free solvated form. It is found that
the magnitude of the NO bond length and the ONCC ′ improper dihedral angle
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Figure 6.1: Model structure of the guanine · · · rigid spin label unit, compared
to the guanine-cytosine base pair of DNA.

Figure 6.2: A sample snapshot taken from the molecular dynamics simulation
of 4M spin label enclosed in the hydrophobic cavity of cucurbit[8]-uril performed
in water solution, showing a particular hydrogen bonding pattern.

that characterize the structural properties of the R2NO· moiety of nitroxide spin
labels is highly influenced by the hydrogen bonding patterns that occur upon
encapsulation. On the other hand, the structural parameters that describe the
R2NO· moiety govern the magnitude of the spectroscopic properties, namely the
electronic g-tensor as well as the nitrogen isotropic hyperfine coupling constant.

In paper III an alternative analysis is presented, which is based on a "inter-
action mechanism" approach, that provides a "dynamically averaged" picture
of the interactions between the solute and the solvent, which are governing the
magnitude of the spectroscopic parameters. It is found that four main contri-
butions to the encapsulation shifts arise, and they are subsequently discussed
in term of their physical origin. The contributions to the encapsulation shift
are due to: (i) internal dynamics of the R2NO· moiety, (ii) interaction with the
water molecules, (iii) interaction with the inclusion complex, (iv) changes in

49



CHAPTER 6. SUMMARY AND OUTLOOK

Figure 6.3: Structure - property relationship in di-tert-butyl nitroxide, showing
the dependence of the spin polarization and spin density contributions to the
nitrogen isotropic hyperfine coupling constant on the improper dihedral angle θ.
Results obtained with the DFT/MM method, at the B3LYP/Huz-IIIsu3 level
of theory.

hydrogen bond strength due to the interaction between solvent molecules and
the inclusion complex. Moreover, a good agreement with experimental data
is achieved for the nitrogen hyperfine coupling constant. For the electronic g-
tensor the differences between the theoretical predictions and experiment may
be traced in the differences between the environmental conditions in the molec-
ular dynamics simulations vs. the ones encountered in real experiments.

Lastly, paper IV represents an extension of the density functional restricted-
unrestricted formalism to incorporate environmental effects through a quantum
mechanical/molecular mechanics approach. This extension, which is targeted
at evaluating hyperfine coupling constants, has been incorporated in the DAL-
TON [74] quantum chemistry program. The environment is represented in a
discrete manner, allowing for a granular description of the polarization and
electrostatic interactions between the quantum and classical regions. With this
technique, it is possible to disentangle the spin polarization and spin density
contributions to the hyperfine coupling constants in terms of the molecular
structure, as well as on the solvent environment. This extension allows the
study of larger systems without the need of including the solvent molecules into
the quantum region, which would make calculations prohibitive, regarding com-
putational costs. This significantly increases the applicability of DFT/MM to
such systems, provided that polarizable force fields exist for the description of
the environment molecules. Moreover, the method provides good results for the
benchmark test case consisting of the di-tert-butyl nitroxide solvated in water
(see. Fig. 6.3).

Moreover, it is important to stress that several simplifying theoretical mod-
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els have been employed along the way, which make the predicted EPR param-
eters rather approximate and by no means exact. The first simplifying model
employed is related to the Foldy-Wouthuysen transformation of the Dirac and
Breit Hamiltonians which uncouple the electron states from the positron states,
which cannot be exactly performed in the presence of electric fields. Then, the
quantum electrodynamics (QED) effects are completely neglected throughout
this work. One should keep in mind that the free electron g-factor predicted by
the Dirac theory is exactly 2, while the QED correction is as big as 2319 ppm,
in excellent agreement with experimental data. So far, there are no theoretical
studies regarding the QED correction to the electronic g-tensor of free radi-
cals, let alone radicals in various environments. The next simplifying models
are related to the general many-body problem treatment. These refer to the
density functional theory method, which is exact in principle, but approximate
in practice since the exact exchange-correlation functional is yet unknown, as
well as to the QM/MM formalism in which the environment is classically de-
scribed. This list of theoretical simplifications mentioned above is by no means
complete, and although several assumptions are made, the predicted EPR pa-
rameters are in a good accordance with experimental data. In summary, the
projects presented in this thesis offer an example of successful usage of theoret-
ical models and techniques for the investigation of EPR parameters of various
spin-labels enclosed in different complex environments. In this way, beside the
microscopic understanding of the mechanisms that govern the EPR parameters
of spin-labels in such environments, these theoretical studies can also be useful
to experimentalists, aiding them in the interpretation of the EPR spectra.
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